scholarly journals GeoAI: a review of Artificial Intelligence approaches for the interpretation of complex Geomatics data

2022 ◽  
Author(s):  
Roberto Pierdicca ◽  
Marina Paolanti

Abstract. Researchers have explored the benefits and applications of modern artificial intelligence (AI) algorithms in different scenario. For the processing of geomatics data, AI offers overwhelming opportunities. Fundamental questions include how AI can be specifically applied to or must be specifically created for geomatics data. This change is also having a significant impact on geospatial data. The integration of AI approaches in geomatics has developed into the concept of Geospatial Artificial Intelligence (GeoAI), which is a new paradigm for geographic knowledge discovery and beyond. However, little systematic work currently exists on how researchers have applied AI for geospatial domains. Hence, this contribution outlines AI-based techniques for analysing and interpreting complex geomatics data. Our analysis has covered several gaps, for instance defining relationships between AI-based approaches and geomatics data. First, technologies and tools used for data acquisition are outlined, with a particular focus on RGB images, thermal images, 3D point clouds, trajectories, and hyperspectral/multispectral images. Then, how AI approaches have been exploited for the interpretation of geomatic data is explained. Finally, a broad set of examples of applications are given, together with the specific method applied. Limitations point towards unexplored areas for future investigations, serving as useful guidelines for future research directions.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Vanita Jain ◽  
Qiming Wu ◽  
Shivam Grover ◽  
Kshitij Sidana ◽  
Gopal Chaudhary ◽  
...  

In this paper, we present a method for generating bird’s eye video from egocentric RGB videos. Working with egocentric views is tricky since such the view is highly warped and prone to occlusions. On the other hand, a bird’s eye view has a consistent scaling in at least the two dimensions it shows. Moreover, most of the state-of-the-art systems for tasks such as path prediction are built for bird’s eye views of the subjects. We present a deep learning-based approach that transfers the egocentric RGB images captured from a dashcam of a car to bird’s eye view. This is a task of view translation, and we perform two experiments. The first one uses an image-to-image translation method, and the other uses a video-to-video translation. We compare the results of our work with homographic transformation, and our SSIM values are better by a margin of 77% and 14.4%, and the RMSE errors are lower by 40% and 14.6% for image-to-image translation and video-to-video translation, respectively. We also visually show the efficacy and limitations of each method with helpful insights for future research. Compared to previous works that use homography and LIDAR for 3D point clouds, our work is more generalizable and does not require any expensive equipment.


Author(s):  
Nasir Saeed ◽  
Ahmed Elzanaty ◽  
Heba Almorad ◽  
Hayssam Dahrouj ◽  
Tareq Y. Al-Naffouri ◽  
...  

<pre><pre>Given the increasing number of space-related applications, research in the emerging space industry is becoming more and more attractive. One compelling area of current space research is the design of miniaturized satellites, known as CubeSats, which are enticing because of their numerous applications and low design-and-deployment cost. </pre><pre>The new paradigm of connected space through CubeSats makes possible a wide range of applications, such as Earth remote sensing, space exploration, and rural connectivity.</pre><pre>CubeSats further provide a complementary connectivity solution to the pervasive Internet of Things (IoT) networks, leading to a globally connected cyber-physical system.</pre><pre>This paper presents a holistic overview of various aspects of CubeSat missions and provides a thorough review of the topic from both academic and industrial perspectives.</pre><pre>We further present recent advances in the area of CubeSat communications, with an emphasis on constellation-and-coverage issues, channel modeling, modulation and coding, and networking.</pre><pre>Finally, we identify several future research directions for CubeSat communications, including Internet of space things, low-power long-range networks, and machine learning for CubeSat resource allocation.</pre></pre>


Author(s):  
E. Grilli ◽  
E. M. Farella ◽  
A. Torresani ◽  
F. Remondino

<p><strong>Abstract.</strong> In the last years, the application of artificial intelligence (Machine Learning and Deep Learning methods) for the classification of 3D point clouds has become an important task in modern 3D documentation and modelling applications. The identification of proper geometric and radiometric features becomes fundamental to classify 2D/3D data correctly. While many studies have been conducted in the geospatial field, the cultural heritage sector is still partly unexplored. In this paper we analyse the efficacy of the geometric covariance features as a support for the classification of Cultural Heritage point clouds. To analyse the impact of the different features calculated on spherical neighbourhoods at various radius sizes, we present results obtained on four different heritage case studies using different features configurations.</p>


Author(s):  
Amal Kilani ◽  
Ahmed Ben Hamida ◽  
Habib Hamam

In this chapter, the authors present a profound literature review of artificial intelligence (AI). After defining it, they briefly cover its history and enumerate its principal fields of application. They name, for example, information system, commerce, image processing, human-computer interaction, data compression, robotics, route planning, etc. Moreover, the test that defines an artificially intelligent system, called the Turing test, is also defined and detailed. Afterwards, the authors describe some AI tools such as fuzzy logic, genetic algorithms, and swarm intelligence. Special attention will be given to neural networks and fuzzy logic. The authors also present the future research directions and ethics.


Author(s):  
Steven Walczak

Artificial intelligence is the science of creating intelligent machines. Human intelligence is comprised of numerous pieces of knowledge as well as processes for utilizing this knowledge to solve problems. Artificial intelligence seeks to emulate and surpass human intelligence in problem solving. Current research tends to be focused within narrow, well-defined domains, but new research is looking to expand this to create global intelligence. This chapter seeks to define the various fields that comprise artificial intelligence and look at the history of AI and suggest future research directions.


Author(s):  
Jim Prentzas ◽  
Ioannis Hatzilygeroudis

E-learning systems play an increasingly important role in lifelong learning. Tailoring the learning process to individual needs is a key issue in such systems. Intelligent Educational Systems (IESs) are e-learning systems employing Artificial Intelligence methods to effectively adapt to learner characteristics. Main types of IESs are Intelligent Tutoring Systems (ITSs) and Adaptive Educational Hypermedia Systems (AEHSs) incorporating intelligent methods. In this chapter, the authors present technologies and techniques used in the primary modules of IESs and survey corresponding patents. They present issues and problems involving specific IES modules as well as the overall IES. The authors discuss solutions offered for such issues by Artificial Intelligence methods and patents. They also discuss categorization aspects of patents related to IESs and briefly present the work described in some representative patents. Lastly, the authors outline future research directions regarding IESs.


Sign in / Sign up

Export Citation Format

Share Document