scholarly journals Re-establishing glacier monitoring in Kyrgyzstan and Uzbekistan, Central Asia

2017 ◽  
Vol 6 (2) ◽  
pp. 397-418 ◽  
Author(s):  
Martin Hoelzle ◽  
Erlan Azisov ◽  
Martina Barandun ◽  
Matthias Huss ◽  
Daniel Farinotti ◽  
...  

Abstract. Glacier mass loss is among the clearest indicators of atmospheric warming. The observation of these changes is one of the major objectives of the international climate monitoring strategy developed by the Global Climate Observing System (GCOS). Long-term glacier mass balance measurements are furthermore the basis for calibrating and validating models simulating future runoff of glacierised catchments. This is essential for Central Asia, which is one of the driest continental regions of the Northern Hemisphere. In the highly populated regions, water shortage due to decreased glacierisation potentially leads to pronounced political instability, drastic ecological changes and endangered food security. As a consequence of the collapse of the former Soviet Union, however, many valuable glacier monitoring sites in the Tien Shan and Pamir Mountains were abandoned. In recent years, multinational actors have re-established a set of important in situ measuring sites to continue the invaluable long-term data series. This paper introduces the applied monitoring strategy for selected glaciers in the Kyrgyz and Uzbek Tien Shan and Pamir, highlights the existing and the new measurements on these glaciers, and presents an example for how the old and new data can be combined to establish multi-decadal mass balance time series. This is crucial for understanding the impact of climate change on glaciers in this region.

2017 ◽  
Author(s):  
Martin Hoelzle ◽  
Erlan Azisov ◽  
Martina Barandun ◽  
Matthias Huss ◽  
Daniel Farinotti ◽  
...  

Abstract. Glacier mass loss is among the clearest indicators of atmospheric warming. The observation of these changes is one of the major objectives of the international climate monitoring strategy developed by the Global Climate Observing System. Long-term glacier mass balance measurements are furthermore the basis to calibrate and validate models simulating future runoff of glacierized catchments. This is essential for Central Asia, which is one of the driest continental regions of the northern hemisphere. In the highly populated regions, water shortage due to decreased glacierization potentially leads to pronounced political instability, drastic ecological changes, and endangered food security. As a consequence of the collapse of the former Soviet Union, however, many valuable glacier monitoring sites in the Tien Shan and Pamirs were abandoned. In recent years, multinational actors have re-established a set of important in-situ measuring sites to continue the invaluable longterm data series. This paper introduces the applied monitoring strategy for selected glaciers in the Kyrgyz and Uzbek Tien Shan and Pamir, highlights the existing and the new measurements on these glaciers and presents an example for how the old and new data can be combined to establish multidecadal mass balance time series. This is crucial for understanding the impact of climate change on glaciers in this region.


2015 ◽  
Vol 9 (1) ◽  
pp. 1133-1175 ◽  
Author(s):  
J. Gabbi ◽  
M. Huss ◽  
A. Bauder ◽  
F. Cao ◽  
M. Schwikowski

Abstract. Light-absorbing impurities in snow and ice control glacier melt as shortwave radiation represents the main component of the surface energy balance. Here, we investigate the long-term effect of snow impurities, i.e. Saharan dust and black carbon (BC), on albedo and glacier mass balance. The analysis was performed over the period 1914–2014 for two sites on Claridenfirn, Swiss Alps, where an outstanding 100 year record of seasonal mass balance measurements is available. Information on atmospheric deposition of mineral dust and BC over the last century was retrieved from two firn/ice cores of high-alpine sites. A combined mass balance and snow/firn layer model was employed to assess the dust/BC-albedo feedback. Compared to pure snow conditions, the presence of Saharan dust and BC lowered the mean annual albedo by 0.04–0.06 and increased melt by 15–19% on average depending on the location on the glacier. BC clearly dominated absorption which is about three times higher than that of mineral dust. The upper site has experienced mainly positive mass balances and impurity layers were continuously buried whereas at the lower site, surface albedo was more strongly influenced by re-exposure of dust-enriched layers due to frequent years with negative mass balances.


2012 ◽  
Vol 6 (4) ◽  
pp. 713-727 ◽  
Author(s):  
M. Huss

Abstract. This study addresses the extrapolation of in-situ glacier mass balance measurements to the mountain-range scale and aims at deriving time series of area-averaged mass balance and ice volume change for all glaciers in the European Alps for the period 1900–2100. Long-term mass balance series for 50 Swiss glaciers based on a combination of field data and modelling, and WGMS data for glaciers in Austria, France and Italy are used. A complete glacier inventory is available for the year 2003. Mass balance extrapolation is performed based on (1) arithmetic averaging, (2) glacier hypsometry, and (3) multiple regression. Given a sufficient number of data series, multiple regression with variables describing glacier geometry performs best in reproducing observed spatial mass balance variability. Future mass changes are calculated by driving a combined model for mass balance and glacier geometry with GCM ensembles based on four emission scenarios. Mean glacier mass balance in the European Alps is −0.31 ± 0.04 m w.e. a−1 in 1900–2011, and −1 m w.e. a−1 over the last decade. Total ice volume change since 1900 is −96 ± 13 km3; annual values vary between −5.9 km3 (1947) and +3.9 km3 (1977). Mean mass balances are expected to be around −1.3 m w.e. a−1 by 2050. Model results indicate a glacier area reduction of 4–18% relative to 2003 for the end of the 21st century.


2011 ◽  
Vol 5 (3) ◽  
pp. 539-549 ◽  
Author(s):  
K. Fujita ◽  
N. Takeuchi ◽  
S. A. Nikitin ◽  
A. B. Surazakov ◽  
S. Okamoto ◽  
...  

Abstract. We conducted 2 yr (2005–2007) of in situ meteorological and glaciological observations on the Gregoriev Glacier, a flat-top glacier within the Inner Tien Shan, Kyrgyzstan. Relative carrier-phase GPS surveys reveal a vertical lowering at the summit of the glacier. Based on snow density data and an energy-mass balance model, we estimate that the annual precipitation and summer mean temperature required to maintain the glacier in the current state are 289 mm and −3.8 °C at the glacier summit (4600 m a.s.l.), respectively. The good agreement between dynamically derived precipitation and the long-term observed precipitation at a nearby station in the Tien Shan (296 mm at 3614 m a.s.l. for the period 1930–2002) suggests that the glacier has been in a near steady-state in terms of mass supply. The glacier mass-balance, reconstructed based on meteorological data from the Tien Shan station for the past 80 yr, explains the observed fluctuations in glacier extent, particularly the negative mass balance in the 1990s.


2011 ◽  
Vol 5 (2) ◽  
pp. 855-883
Author(s):  
K. Fujita ◽  
N. Takeuchi ◽  
S. A. Nikitin ◽  
A. B. Surazakov ◽  
S. Okamoto ◽  
...  

Abstract. We conducted 2 yr (2005–2007) of in situ meteorological and glaciological observations on the Gregoriev Glacier, a flat-top glacier within the Inner Tien Shan, Kyrgyzstan. Differential GPS surveys reveal a vertical surface deletion at the summit of the glacier. Based on snow density data and an energy-mass balance model, we estimate that the annual precipitation and summer mean temperature required to maintain the glacier in the modern state are 289 mm and −3.85 °C at the glacier summit (4600 m above sea level, a.s.l.), respectively. The good agreement between the long-term estimated and observed precipitation at a nearby station in the Tien Shan (292 mm at 3614 m a.s.l. for the period 1930–2002) suggests that the glacier dynamics have been regulated by the long-term average accumulation. The glacier mass-balance, reconstructed based on meteorological data from the Tien Shan station for the past 80 yr, explains the observed fluctuations in glacier extent, particularly the negative mass balance in the 1990s.


2006 ◽  
Vol 43 ◽  
pp. 323-328 ◽  
Author(s):  
Tianding Han ◽  
Yongjian Ding ◽  
Baisheng Ye ◽  
Shiyin Liu ◽  
Keqin Jiao

AbstractThe temporal and spatial variations of mass balance on different timescales were analyzed to identify their response to climate change using long-term observed mass-balance data covering the period 1959–2002 at Ürümqi glacier No. 1 at the headwaters of the Ürümqi river, Tien Shan, China. The results show that the accumulated glacier mass balance has decreased by 9599 mm w.e., which is equivalent to about 10 m mean thickness reduction. The negative mass balance has been accentuated in recent years, with a mean mass balance during the period 1997–2002 of –739.6 mm a−1. The glacier mass balance shows a clear periodicity, with positive and negative alternations of 7 and 15 years during the past several decades. Annual mass balance shows a significant negative correlation with summer air temperature from June to August. It is influenced more by annual air temperature than by annual precipitation. The temperature increase preceded the precipitation increase as an influence on the mass balance. Furthermore, monthly mass balance shows a negative correlation with monthly air temperature, significant at the 99% confidence level in July and August. Monthly mass balance is negatively correlated with precipitation in May and August at the 95% confidence level, but positively and insignificantly correlated with precipitation in June and July. The negative relationship between mass balance and precipitation might be related to concurrent increases of precipitation and temperature.


2015 ◽  
Vol 9 (4) ◽  
pp. 1385-1400 ◽  
Author(s):  
J. Gabbi ◽  
M. Huss ◽  
A. Bauder ◽  
F. Cao ◽  
M. Schwikowski

Abstract. Light-absorbing impurities in snow and ice control glacier melt as shortwave radiation represents the main component of the surface energy balance. Here, we investigate the long-term effect of snow impurities, i.e., mineral dust and black carbon (BC), on albedo and glacier mass balance. The analysis was performed over the period 1914–2014 for two sites on Claridenfirn, Swiss Alps, where an outstanding 100-year record of seasonal mass balance measurements is available. Information on atmospheric deposition of mineral dust and BC over the last century was retrieved from two firn/ice cores of high-alpine sites. A combined mass balance and snow/firn layer model was employed to assess the effects of melt and accumulation processes on the impurity concentration at the surface and thus on albedo and glacier mass balance. Compared to pure snow conditions, the presence of Saharan dust and BC lowered the mean annual albedo by 0.04–0.06 depending on the location on the glacier. Consequently, annual melt was increased by 15–19 %, and the mean annual mass balance was reduced by about 280–490 mm w.e. BC clearly dominated absorption which is about 3 times higher than that of mineral dust. The upper site has experienced mainly positive mass balances and impurity layers were continuously buried whereas at the lower site, surface albedo was more strongly influenced by re-exposure of dust and BC-enriched layers due to frequent years with negative mass balances.


2012 ◽  
Vol 6 (2) ◽  
pp. 1117-1156 ◽  
Author(s):  
M. Huss

Abstract. This study addresses the extrapolation of single glacier mass balance measurements to the mountain range scale and aims at deriving time series of area-averaged mass balance and ice volume change for all glaciers in the European Alps for the period 1900–2100. Long-term mass balance series for 50 Swiss glaciers based on a combination of field data and modelling, and WGMS data for glaciers in Austria, France and Italy are used. A complete glacier inventory is available for the year 2003. Mass balance extrapolation is performed based on (1) arithmetic averaging, (2) glacier hypsometry, and (3) multiple regression. Given a sufficient number of data series, multiple regression with variables describing glacier geometry performs best in reproducing observed spatial mass balance variability. Future mass changes are calculated by driving a combined model for mass balance and glacier geometry with GCM ensembles based on four emission scenarios. Mean glacier mass balance in the European Alps is −0.32 ± 0.04 m w.e. a−1 in 1900–2011, and −1 m w.e. a−1 over the last decade. Total ice volume change since 1900 is −100 ± 13 km3; annual values vary between −5.9 km3 (1947) and +3.9 km3 (1977). Mean mass balances are expected to be around −1.3 m w.e. a−1 by 2050. Model results indicate a glacier area reduction to 4–18% relative to 2003 for the end of the 21st century.


2009 ◽  
Vol 50 (50) ◽  
pp. 101-111 ◽  
Author(s):  
M. Zemp ◽  
M. Hoelzle ◽  
W. Haeberli

AbstractGlacier mass balance is the direct and undelayed response to atmospheric conditions and hence is among the essential variables required for climate system monitoring. It has been recognized as the largest non-steric contributor to the present rise in sea level. Six decades of annual mass-balance data have been compiled and made easily available by the World Glacier Monitoring Service and its predecessor organizations. In total, there have been 3480 annual mass-balance measurements reported from 228 glaciers around the globe. However, the present dataset is strongly biased towards the Northern Hemisphere and Europe and there are only 30 ‘reference’ glaciers that have uninterrupted series going back to 1976. The available data from the six decades indicate a strong ice loss as early as the 1940s and 1950s followed by a moderate mass loss until the end of the 1970s and a subsequent acceleration that has lasted until now, culminating in a mean overall ice loss of over 20mw.e. for the period 1946–2006. In view of the discrepancy between the relevance of glacier mass-balance data and the shortcomings of the available dataset it is strongly recommended to: (1) continue the long-term measurements; (2) resume interrupted long-term data series; (3) replace vanishing glaciers by early-starting replacement observations; (4) extend the monitoring network to strategically important regions; (5) validate, calibrate and accordingly flag field measurements with geodetic methods; and (6) make systematic use of remote sensing and geo-informatics for assessment of the representativeness of the available data series for their entire mountain range and for the extrapolation to regions without in situ observations; and (7) make all these data and related meta-information available.


Sign in / Sign up

Export Citation Format

Share Document