scholarly journals The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier

2015 ◽  
Vol 9 (4) ◽  
pp. 1385-1400 ◽  
Author(s):  
J. Gabbi ◽  
M. Huss ◽  
A. Bauder ◽  
F. Cao ◽  
M. Schwikowski

Abstract. Light-absorbing impurities in snow and ice control glacier melt as shortwave radiation represents the main component of the surface energy balance. Here, we investigate the long-term effect of snow impurities, i.e., mineral dust and black carbon (BC), on albedo and glacier mass balance. The analysis was performed over the period 1914–2014 for two sites on Claridenfirn, Swiss Alps, where an outstanding 100-year record of seasonal mass balance measurements is available. Information on atmospheric deposition of mineral dust and BC over the last century was retrieved from two firn/ice cores of high-alpine sites. A combined mass balance and snow/firn layer model was employed to assess the effects of melt and accumulation processes on the impurity concentration at the surface and thus on albedo and glacier mass balance. Compared to pure snow conditions, the presence of Saharan dust and BC lowered the mean annual albedo by 0.04–0.06 depending on the location on the glacier. Consequently, annual melt was increased by 15–19 %, and the mean annual mass balance was reduced by about 280–490 mm w.e. BC clearly dominated absorption which is about 3 times higher than that of mineral dust. The upper site has experienced mainly positive mass balances and impurity layers were continuously buried whereas at the lower site, surface albedo was more strongly influenced by re-exposure of dust and BC-enriched layers due to frequent years with negative mass balances.

2015 ◽  
Vol 9 (1) ◽  
pp. 1133-1175 ◽  
Author(s):  
J. Gabbi ◽  
M. Huss ◽  
A. Bauder ◽  
F. Cao ◽  
M. Schwikowski

Abstract. Light-absorbing impurities in snow and ice control glacier melt as shortwave radiation represents the main component of the surface energy balance. Here, we investigate the long-term effect of snow impurities, i.e. Saharan dust and black carbon (BC), on albedo and glacier mass balance. The analysis was performed over the period 1914–2014 for two sites on Claridenfirn, Swiss Alps, where an outstanding 100 year record of seasonal mass balance measurements is available. Information on atmospheric deposition of mineral dust and BC over the last century was retrieved from two firn/ice cores of high-alpine sites. A combined mass balance and snow/firn layer model was employed to assess the dust/BC-albedo feedback. Compared to pure snow conditions, the presence of Saharan dust and BC lowered the mean annual albedo by 0.04–0.06 and increased melt by 15–19% on average depending on the location on the glacier. BC clearly dominated absorption which is about three times higher than that of mineral dust. The upper site has experienced mainly positive mass balances and impurity layers were continuously buried whereas at the lower site, surface albedo was more strongly influenced by re-exposure of dust-enriched layers due to frequent years with negative mass balances.


2010 ◽  
Vol 4 (3) ◽  
pp. 1151-1194
Author(s):  
A. Fischer

Abstract. Glacier mass balance is measured with the direct or the geodetic method. In this study, the geodetic mass balances of six Austrian glaciers in 19 periods between 1953 and 2006 are compared to the direct mass balances in the same periods. The mean annual geodetic mass balance for all periods is −0.5 m w.e./year. The mean difference between the geodetic and the direct data is −0.7 m w.e., the minimum −7.3 m w.e. and the maximum 5.6 m w.e. The accuracy of geodetic mass balance resulting from the accuracy of the DEMs ranges from 2 m w.e. for photogrammetric data to 0.002 m w.e. for LIDAR data. Basal melt, seasonal snow cover and density changes of the surface layer contribute up to 0.7 m w.e. for the period of 10 years to the difference to the direct method. The characteristics of published data of Griesgletscher, Gulkana Glacier, Lemon Creek glacier, South Cascade, Storbreen, Storglaciären, and Zongo Glacier is similar to these Austrian glaciers. For 26 analyzed periods with an average length of 18 years the mean difference between the geodetic and the direct data is −0.4 m w.e., the minimum −7.2 m w.e. and the maximum 3.6 m w.e. Longer periods between the acquisition of the DEMs do not necessarily result in a higher accuracy of the geodetic mass balance. Specific glaciers show specific trends of the difference between the direct and the geodetic data according to their type and state. In conclusion, geodetic and direct mass balance data are complementary, but differ systematically.


2021 ◽  
Vol 13 (8) ◽  
pp. 3791-3818
Author(s):  
Dorothea Stumm ◽  
Sharad Prasad Joshi ◽  
Tika Ram Gurung ◽  
Gunjan Silwal

Abstract. The glacier mass balance is an important variable to describe the climate system and is used for various applications like water resource management or runoff modelling. The direct or glaciological method and the geodetic method are the standard methods to quantify glacier mass changes, and both methods are an integral part of international glacier monitoring strategies. In 2011, we established two glacier mass-balance programmes on Yala and Rikha Samba glaciers in the Nepal Himalaya. Here we present the methods and data of the directly measured annual mass balances for the first six mass-balance years for both glaciers from 2011/2012 to 2016/2017. For Yala Glacier we additionally present the directly measured seasonal mass balance from 2011 to 2017, as well as the mass balance from 2000 to 2012 obtained with the geodetic method. In addition, we analysed glacier length changes for both glaciers. The directly measured average annual mass-balance rates of Yala and Rikha Samba glaciers are −0.80 ± 0.28 and −0.39 ± 0.32 m w.e. a−1, respectively, from 2011 to 2017. The geodetically measured annual mass-balance rate of Yala Glacier based on digital elevation models from 2000 and 2012 is −0.74 ± 0.53 m w.e. The cumulative mass loss for the period 2011 to 2017 for Yala and Rikha Samba glaciers is −4.80 ± 0.69 and −2.34 ± 0.79 m w.e., respectively. The mass loss on Yala Glacier from 2000 to 2012 is −8.92 ± 6.33 m w.e. The winter balance of Yala Glacier is positive, and the summer balance is negative in every investigated year. The summer balance determines the annual balance. Compared to regional mean geodetic mass-balance rates in the Nepalese Himalaya, the mean mass-balance rate of Rikha Samba Glacier is in a similar range, and the mean mass-balance rate of Yala Glacier is more negative because of the small and low-lying accumulation area. During the study period, a change of Yala Glacier's surface topography has been observed with glacier thinning and downwasting. The retreat rates of Rikha Samba Glacier are higher than for Yala Glacier. From 1989 to 2013, Rikha Samba Glacier retreated 431 m (−18.0 m a−1), and from 1974 to 2016 Yala Glacier retreated 346 m (−8.2 m a−1). The data of the annual and seasonal mass balances, point mass balance, geodetic mass balance, and length changes are accessible from the World Glacier Monitoring Service (WGMS, 2021), https://doi.org/10.5904/wgms-fog-2021-05.


1990 ◽  
Vol 14 ◽  
pp. 102-106 ◽  
Author(s):  
Jon Ove Hagen ◽  
Olav Liestøl

Mass-balance investigations on glaciers in Svalbard at high latitudes (78°N) show that the ice masses have been steadily decreasing during the period 1950–88. Detailed annual observations have been carried out on Brøggerbreen since 1966 and Lovénbreen since 1967. The mean specific net balances are −0.46 and −0.37 m year−1 water equivalent respectively. Only one year had positive net balance in this period. The cumulative mass lost in the period is then more than 10% of the volume in 1967. Zero net balance would be obtained if the summer temperature was lowered about 1°C or if the winter precipitation increased about 50%. There is a strong correlation between the net mass balance and the height of the equilibrium-line altitude (ELA). Because of the high amount of superimposed ice (10–30% of winter balance) stake readings are necessary to find the ELA. There is no sign of climatic warming through increased melting. The trend analysis of the data from the last 20 years shows stable conditions with a slight increase of the winter balance. The net balance is then slightly increasing and thus less negative than 20 years ago.


2021 ◽  
Vol 13 (10) ◽  
pp. 1949
Author(s):  
Saeideh Gharehchahi ◽  
Thomas J. Ballinger ◽  
Jennifer L. R. Jensen ◽  
Anshuman Bhardwaj ◽  
Lydia Sam ◽  
...  

Glacier mass variations are climate indicators. Therefore, it is essential to examine both winter and summer mass balance variability over a long period of time to address climate-related ice mass fluctuations. In this study we analyze glacier mass balance components and hypsometric characteristics with respect to their interactions with local meteorological variables and remote large-scale atmospheric and oceanic patterns. The results show that all selected glaciers have lost their equilibrium condition in recent decades, with persistent negative annual mass balance trends and decreasing accumulation area ratios (AARs), accompanied by increasing air temperatures of ≥+0.45 °C decade−1. The controlling factor of annual mass balance is mainly attributed to summer mass losses, which are correlated with (warming) June to September air temperatures. In addition, the interannual variability of summer and winter mass balances is primarily associated to the Atlantic Multidecadal Oscillation (AMO), Greenland Blocking Index (GBI), and East Atlantic (EA) teleconnections. Although climate parameters are playing a significant role in determining the glacier mass balance in the region, the observed correlations and mass balance trends are in agreement with the hypsometric distribution and morphology of the glaciers. The analysis of decadal frontal retreat using Landsat images from 1984 to 2014 also supports the findings of this research, highlighting the impact of lake formation at terminus areas on rapid glacier retreat and mass loss in the Swiss Alps.


2010 ◽  
Vol 4 (2) ◽  
pp. 737-766 ◽  
Author(s):  
F. Paul

Abstract. Glaciers are widely recognized as unique demonstration objects for climate change impacts, mostly due to the strong change of glacier length in response to small climatic changes. However, glacier mass balance as the direct response to the annual atmospheric conditions can be better interpreted in meteorological terms. When the climatic signal is deduced from long-term mass balance data, changes in glacier geometry (i.e. surface extent and elevation) must be considered as such adjustments form an essential part of the glacier reaction to new climatic conditions. In this study, a set of modeling experiments is performed to assess the influence of changes in glacier geometry on mass balance for constant climatic conditions. The calculations are based on a simplified distributed energy/mass balance model in combination with information on glacier extent and surface elevation for the years 1850 and 1973/1985 for a larger sample of glaciers in the Swiss Alps. The results reveal that about 50–70% of the glacier reaction to climate change (here a one degree increase in temperature) is "hidden" in the geometric adjustment, while only 30–50% can be measured as the long-term mean mass balance. Thereby, changes in glacier extent alone have an even stronger effect, but they are partly compensated for by a lowered surface elevation which gives on average a slightly more negative balance despite an increase of topographic shading. In view of several additional reinforcement feedbacks that are observed in periods of strong glacier decline, it seems that the climatic interpretation of mass balance data is also rather complex.


2021 ◽  
pp. 1-17
Author(s):  
Matthias Huss ◽  
Andreas Bauder ◽  
Andreas Linsbauer ◽  
Jeannette Gabbi ◽  
Giovanni Kappenberger ◽  
...  

Abstract Glacier mass-balance observations at seasonal resolution have been performed since 1914 at two sites on Claridenfirn, Switzerland. The measurements are the longest uninterrupted records of glacier mass balance worldwide. Here, we provide a complete re-analysis of the 106-year series (1914–2020), focusing on both point and glacier-wide mass balance. The approaches to evaluate and homogenize the direct observations are described in detail. Based on conservative assumptions, average uncertainties of $\pm$ 0.25 m w.e. are estimated for glacier-wide mass balances at the annual scale. It is demonstrated that long-term variations in mass balance are clearly driven by melting, whereas decadal changes in accumulation are uncorrelated with mass balance and can only be relevant in short periods. Mass change of Claridenfirn is impacted by dry calving at a frontal ice cliff. Considerations of ice volume flux at a cross-profile reveal long-term variations in frontal ice loss accounting for $\sim$ 9% of total annual ablation on average. The effect of changes in frontal ablation mostly explains $\lt$ 10% of the mass-balance difference relative to the period 1960–1990, but accounts for $\sim$ 20% in 2010–2020. Glacier mass changes are discussed in the context of observations throughout the European Alps indicating that Claridenfirn is regionally representative.


2007 ◽  
Vol 46 ◽  
pp. 367-374 ◽  
Author(s):  
Atsumu Ohmura ◽  
Andreas Bauder ◽  
Hans Müller ◽  
Giovanni Kappenberger

AbstractThe effect of climate change in the 20th century is investigated based on measured mass-balance data. Annual, winter and summer mass balances on Claridenfirn, Switzerland, (since 1914/15) Storglaciären, Sweden, (since 1945/46) Storbreen, Norway, (since 1948/49) Glacier de Sarennes, France, (since 1948/49) and Vernagtferner, Austria, (since 1965/66) are studied with air temperature at high-altitude stations and the longest records of solar global radiation in Europe. The mean mass balances of these glaciers during the 20th century were mostly negative except for the first two decades. The fluctuating mass balance reaches the minimum (largest loss) and maximum (almost equilibrium) around 1940 and 1980, respectively, with a drastic loss in the last 15 years. These variations are mostly steered by the variation in summer mass balance. The change in the summer mass balance is determined to 72% by temperature and the remaining 28% by solar radiation. During the colder period (e.g. 1960–80), the reduction in solar radiation counteracted the warming trend due to the greenhouse effect. Since 1990 the greenhouse effect of terrestrial radiation and the global brightening effect of solar radiation have both been acting to accelerate the melt, resulting in the unprecedented mass loss of the observational era. The glacier mass balance during the 20th century clearly reacted towards temperature and solar radiation changes, which reflected the greenhouse effect and aerosol and cloud variations.


2010 ◽  
Vol 4 (4) ◽  
pp. 569-581 ◽  
Author(s):  
F. Paul

Abstract. Glaciers are widely recognized as unique demonstration objects for climate change impacts, mostly due to the strong change of glacier length in response to small climatic changes. However, glacier mass balance as the direct response to the annual atmospheric conditions can be better interpreted in meteorological terms. When the climatic signal is deduced from long-term mass balance data, changes in glacier geometry (i.e. surface extent and elevation) must be considered as such adjustments form an essential part of the glacier reaction to new climatic conditions. In this study, a set of modelling experiments is performed to assess the influence of changes in glacier geometry on mass balance for constant climatic conditions. The calculations are based on a simplified distributed energy/mass balance model in combination with information on glacier extent and surface elevation for the years 1850 and 1973/1985 for about 60 glaciers in the Swiss Alps. The results reveal that over this period about 50–70% of the glacier reaction to climate change (here a one degree increase in temperature) is "hidden" in the geometric adjustment, while only 30–50% can be measured as the long-term mean mass balance. For larger glaciers, the effect of the areal change is partly reduced by a lowered surface elevation, which results in a slightly more negative balance despite a potential increase of topographic shading. In view of several additional reinforcement feedbacks that are observed in periods of strong glacier decline, it seems that the climatic interpretation of long-term mass balance data is rather complex.


2019 ◽  
Vol 65 (250) ◽  
pp. 309-320 ◽  
Author(s):  
YUSHAN ZHOU ◽  
ZHIWEI LI ◽  
JIA LI ◽  
RONG ZHAO ◽  
XIAOLI DING

ABSTRACTMultiple studies on regional glacier mass balance in the Pamir Mountains have been conducted using the geodetic method, but they were rarely extended to the period before 2000. In this study, we used KH-9 imagery acquired in 1975 to generate the historical DEM for the central Pamir, and then obtained the glacier elevation change by comparing this with the SRTM C-band DEM. The penetration depth of the C-band radar was corrected for different glacier surfaces, i.e. 2.96, 1.68 and 0 m for firn/snow cover, bare ice and debris-covered areas, respectively. The final results suggest that the central Pamir glaciers, overall, experienced a near-zero mass balance of −0.03 ± 0.24 m w.e. a−1 for 1975–99. Due to glacier surge activity, the elevation change patterns of individual glaciers were highly variable, and their mass balances varied from −0.12 ± 0.26 to 0.63 ± 0.20 m w.e. a−1. The mean mass budgets of the surge-type glaciers and non-surge-type glaciers were 0.03 ± 0.14 and −0.05 ± 0.28 m w.e. a−1, respectively. Concurring with previous studies, we conclude that the central Pamir glaciers may have been in a state of approximately balanced mass budget or slight mass deficit from the mid-1970s to the mid-2010s.


Sign in / Sign up

Export Citation Format

Share Document