scholarly journals An Intermediate Complexity Climate Model (ICCMp1) based on the GFDL flexible modelling system

2009 ◽  
Vol 2 (2) ◽  
pp. 73-88 ◽  
Author(s):  
R. Farneti ◽  
G. K. Vallis

Abstract. An intermediate complexity coupled ocean-atmosphere-land-ice model, based on the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modelling System (FMS), has been developed to study mechanisms of ocean-atmosphere interactions and natural climate variability at interannual to interdecadal and longer time scales. The model uses the three-dimensional primitive equations for both ocean and atmosphere but is simplified from a "state of the art" coupled model by using simplified atmospheric physics and parameterisation schemes. These simplifications provide considerable savings in computational expense and, perhaps more importantly, allow mechanisms to be investigated more cleanly and thoroughly than with a more elaborate model. For example, the model allows integrations of several millennia as well as broad parameter studies. For the ocean, the model uses the free surface primitive equations Modular Ocean Model (MOM) and the GFDL/FMS sea-ice model (SIS) is coupled to the oceanic grid. The atmospheric component consists of the FMS B-grid moist primitive equations atmospheric dynamical core with highly simplified physical parameterisations. A simple bucket model is implemented for our idealised land following the GFDL/FMS Land model. The model is supported within the standard MOM releases as one of its many test cases and the source code is thus freely available. Here we describe the model components and present a climatology of coupled simulations achieved with two different geometrical configurations. Throughout the paper, we give a flavour of the potential for this model to be a powerful tool for the climate modelling community by mentioning a wide range of studies that are currently being explored.

2009 ◽  
Vol 2 (1) ◽  
pp. 341-383
Author(s):  
R. Farneti ◽  
G. K. Vallis

Abstract. An intermediate complexity coupled ocean-atmosphere-land-ice model, based on the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modelling System (FMS), has been developed to study mechanisms of ocean-atmosphere interactions and natural climate variability at interannual to interdecadal and longer time scales. The model uses the three-dimensional primitive equations for both ocean and atmosphere, but is simplified from a "state of the art" coupled model in two respects: it uses simplified physics and parameterisation schemes, especially in the atmosphere, and idealised geometry and geography. These simplifications provide considerable savings in computational expense and, perhaps more importantly, allow mechanisms to be investigated more cleanly and thoroughly than with a more elaborate model. For example, the model allows integrations of several millennia as well as broad parameter studies. For the ocean, the model uses the free surface primitive equations Modular Ocean Model (MOM) and the GFDL/FMS sea-ice model (SIS) is coupled to the oceanic grid. The atmospheric component consists of the FMS B-grid moist primitive equations atmospheric dynamical core with highly simplified physical parameterisations. A simple bucket model is implemented for our idealised land following the GFDL/FMS Land model. Here we describe the model components and present a climatology of coupled simulations achieved with two different geometrical configurations. Throughout the paper, we give a flavour of the potential for this model to be a powerful tool for the climate modelling community by mentioning a wide range of studies that are currently being explored.


2011 ◽  
Vol 4 (2) ◽  
pp. 223-253 ◽  
Author(s):  
H. T. Hewitt ◽  
D. Copsey ◽  
I. D. Culverwell ◽  
C. M. Harris ◽  
R. S. R. Hill ◽  
...  

Abstract. This paper describes the development of a technically robust climate modelling system, HadGEM3, which couples the Met Office Unified Model atmosphere component, the NEMO ocean model and the Los Alamos sea ice model (CICE) using the OASIS coupler. Details of the coupling and technical solutions of the physical model (HadGEM3-AO) are documented, in addition to a description of the configurations of the individual submodels. The paper demonstrates that the implementation of the model has resulted in accurate conservation of heat and freshwater across the model components. The model performance in early versions of this climate model is briefly described to demonstrate that the results are scientifically credible. HadGEM3-AO is the basis for a number of modelling efforts outside of the Met Office, both within the UK and internationally. This documentation of the HadGEM3-AO system provides a detailed reference for developers of HadGEM3-based climate configurations.


2010 ◽  
Vol 3 (4) ◽  
pp. 1861-1937 ◽  
Author(s):  
H. T. Hewitt ◽  
D. Copsey ◽  
I. D. Culverwell ◽  
C. M. Harris ◽  
R. S. R. Hill ◽  
...  

Abstract. This paper describes the development of a technically robust climate modelling system, HadGEM3, which couples the Met Office Unified Model atmosphere component, the NEMO ocean model and the Los Alamos sea ice model (CICE) using the OASIS coupler. Details of the coupling and technical solutions are documented in the paper in addition to a description of the configurations of the individual submodels. The paper demonstrates that the implementation of the model has resulted in accurate conservation of heat and freshwater across the model components. The model performance in early versions of this climate model is briefly described to demonstrate that the results are scientifically credible. HadGEM3 is the basis for a number of modelling efforts outside of the Met Office, both within the UK and internationally. This documentation of the HadGEM3 system provides a detailed reference for developers of HadGEM3-based climate configurations.


2010 ◽  
Vol 23 (1) ◽  
pp. 80-96 ◽  
Author(s):  
Jianjun Yin ◽  
Ronald J. Stouffer ◽  
Michael J. Spelman ◽  
Stephen M. Griffies

Abstract The unphysical virtual salt flux (VSF) formulation widely used in the ocean component of climate models has the potential to cause systematic and significant biases in modeling the climate system and projecting its future evolution. Here a freshwater flux (FWF) and a virtual salt flux version of the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL CM2.1) are used to evaluate and quantify the uncertainties induced by the VSF formulation. Both unforced and forced runs with the two model versions are performed and compared in detail. It is found that the differences between the two versions are generally small or statistically insignificant in the unforced control runs and in the runs with a small external forcing. In response to a large external forcing, however, some biases in the VSF version become significant, especially the responses of regional salinity and global sea level. However, many fundamental aspects of the responses differ only quantitatively between the two versions. An unexpected result is the distinctly different ENSO responses. Under a strong external freshwater forcing, the great enhancement of the ENSO variability simulated by the FWF version does not occur in the VSF version and is caused by the overexpansion of the top model layer. In summary, the principle assumption behind using virtual salt flux is not seriously violated and the VSF model has the ability to simulate the current climate and project near-term climate evolution. For some special studies such as a large hosing experiment, however, both the VSF formulation and the use of the FWF in the geopotential coordinate ocean model could have some deficiencies and one should be cautious to avoid them.


2005 ◽  
Vol 5 (4) ◽  
pp. 1125-1156 ◽  
Author(s):  
P. Stier ◽  
J. Feichter ◽  
S. Kinne ◽  
S. Kloster ◽  
E. Vignati ◽  
...  

Abstract. The aerosol-climate modelling system ECHAM5-HAM is introduced. It is based on a flexible microphysical approach and, as the number of externally imposed parameters is minimised, allows the application in a wide range of climate regimes. ECHAM5-HAM predicts the evolution of an ensemble of microphysically interacting internally- and externally-mixed aerosol populations as well as their size-distribution and composition. The size-distribution is represented by a superposition of log-normal modes. In the current setup, the major global aerosol compounds sulfate (SU), black carbon (BC), particulate organic matter (POM), sea salt (SS), and mineral dust (DU) are included. The simulated global annual mean aerosol burdens (lifetimes) for the year 2000 are for SU: 0.80 Tg(S) (3.9 days), for BC: 0.11 Tg (5.4 days), for POM: 0.99 Tg (5.4 days), for SS: 10.5 Tg (0.8 days), and for DU: 8.28 Tg (4.6 days). An extensive evaluation with in-situ and remote sensing measurements underscores that the model results are generally in good agreement with observations of the global aerosol system. The simulated global annual mean aerosol optical depth (AOD) is with 0.14 in excellent agreement with an estimate derived from AERONET measurements (0.14) and a composite derived from MODIS-MISR satellite retrievals (0.16). Regionally, the deviations are not negligible. However, the main patterns of AOD attributable to anthropogenic activity are reproduced.


2004 ◽  
Vol 4 (5) ◽  
pp. 5551-5623 ◽  
Author(s):  
P. Stier ◽  
J. Feichter ◽  
S. Kinne ◽  
S. Kloster ◽  
E. Vignati ◽  
...  

Abstract. The aerosol-climate modelling system ECHAM5-HAM is introduced. It is based on a flexible microphysical approach and, as the number of externally imposed parameters is minimised, allows the application in a wide range of climate regimes. ECHAM5-HAM predicts the evolution of an ensemble of microphysically interacting internally- and externally-mixed aerosol populations as well as their size-distribution and composition. The size-distribution is represented by a superposition of log-normal modes. In the current setup, the major global aerosol compounds sulfate (SU), black carbon (BC), particulate organic matter (POM), sea salt (SS), and mineral dust (DU) are included. The simulated global annual mean aerosol burdens (lifetimes) for the year 2000 are for SO4: 0.80 Tg(S) (3.9 days), for BC: 0.11 Tg (5.4 days), for POM: 0.99 Tg (5.4 days), for SS: 10.5 Tg (0.8 days), and for DU: 8.28 Tg (4.6 days). An extensive evaluation with in-situ and remote sensing measurements underscores that the model results are generally in good agreement with observations of the global aerosol system. The simulated global annual mean aerosol optical depth (AOD) is with 0.14 in excellent agreement with an estimate derived from AERONET measurements (0.14) and a composite derived from MODIS-MISR satellite retrievals (0.16). Regionally, the deviations are not negligible. However, the main patterns of AOD attributable to anthropogenic activity are reproduced.


2020 ◽  
Vol 148 (6) ◽  
pp. 2411-2431
Author(s):  
Paul A. Sandery ◽  
Terence J. O’Kane ◽  
Vassili Kitsios ◽  
Pavel Sakov

Abstract Data assimilation (DA) experiments are performed to assess impacts of observations in climate model state estimation through the cross-domain ocean–atmosphere forecast error covariances (cross covariances). Specifically, we explore strongly and weakly coupled DA variants using the Climate Analysis Forecast Ensemble (CAFE) system. This comprises 96 ensemble members of the Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 climate model assimilating observational data from the ocean, atmosphere, and sea ice realms with the ensemble Kalman filter (EnKF). Sequences of atmospheric synoptic time-scale coupled forecasts (7 days) are carried out with model consistent initialization. Unassimilated forward-independent observations are used to quantify forecast innovation error-growth rates. The results show benefit for the slow components of the atmosphere and ocean subsurface when strongly coupling ocean observations to the atmosphere. In the present system, projecting fast atmospheric observations onto the ocean subsurface through the cross covariances benefits the oceanic and atmospheric near-surface layers; however, this leads to deterioration in the ocean subsurface. Particular variants of coupled DA are able to constrain the ocean and atmosphere. The forecasts initialized with these variants have predictability at intraseasonal time scales. Errors associated with the dominant intraseasonal mode of variability, the Madden–Julian oscillation (MJO), are decomposed into normal mode functions. Consistent with recent studies showing large MJO events are concurrent with rapid error growth associated with nonlinear interactions, we find a clear relationship between the strength of a given MJO event and the related forecast innovations. Our results demonstrate consistent system behavior in relation to capturing real-world disturbances that affect climate predictability.


2013 ◽  
Vol 10 (2) ◽  
pp. 555-579 ◽  
Author(s):  
A. Born ◽  
T. F. Stocker ◽  
A. B. Sandø

Abstract. Salt transport in the Irminger Current and thus the coupling between eastern and western subpolar North Atlantic plays an important role for climate variability across a wide range of time scales. High-resolution ocean modeling and observations indicate that salinities in the eastern subpolar North Atlantic decrease with enhanced circulation of the North Atlantic subpolar gyre (SPG). This has led to the perception that a stronger SPG also transports less salt westward. In this study, we analyze a regional ocean model and a comprehensive global coupled climate model, and show that a stronger SPG transports more salt in the Irminger Current irrespective of lower salinities in its source region. The additional salt converges in the Labrador Sea and the Irminger Basin by eddy transports, increases surface salinity in the western SPG, and favors more intense deep convection. This is part of a positive feedback mechanism with potentially large implications for climate variability and predictability.


2020 ◽  
Vol 13 (9) ◽  
pp. 4183-4204
Author(s):  
Nadine Mengis ◽  
David P. Keller ◽  
Andrew H. MacDougall ◽  
Michael Eby ◽  
Nesha Wright ◽  
...  

Abstract. The University of Victoria Earth System Climate Model (UVic ESCM) of intermediate complexity has been a useful tool in recent assessments of long-term climate changes, including both paleo-climate modelling and uncertainty assessments of future warming. Since the last official release of the UVic ESCM 2.9 and the two official updates during the last decade, considerable model development has taken place among multiple research groups. The new version 2.10 of the University of Victoria Earth System Climate Model presented here will be part of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). More precisely it will be used in the intercomparison of Earth system models of intermediate complexity (EMIC), such as the C4MIP, the Carbon Dioxide Removal and Zero Emissions Commitment model intercomparison projects (CDR-MIP and ZECMIP, respectively). It now brings together and combines multiple model developments and new components that have come about since the last official release of the model. The main additions to the base model are (i) an improved biogeochemistry module for the ocean, (ii) a vertically resolved soil model including dynamic hydrology and soil carbon processes, and (iii) a representation of permafrost carbon. To set the foundation of its use, we here describe the UVic ESCM 2.10 and evaluate results from transient historical simulations against observational data. We find that the UVic ESCM 2.10 is capable of reproducing changes in historical temperature and carbon fluxes well. The spatial distribution of many ocean tracers, including temperature, salinity, phosphate and nitrate, also agree well with observed tracer profiles. The good performance in the ocean tracers is connected to an improved representation of ocean physical properties. For the moment, the main biases that remain are a vegetation carbon density that is too high in the tropics, a higher than observed change in the ocean heat content (OHC) and an oxygen utilization in the Southern Ocean that is too low. All of these biases will be addressed in the next updates to the model.


2014 ◽  
Vol 27 (1) ◽  
pp. 168-185 ◽  
Author(s):  
Ryan L. Sriver ◽  
Axel Timmermann ◽  
Michael E. Mann ◽  
Klaus Keller ◽  
Hugues Goosse

Abstract A new anomaly coupling technique is introduced into a coarse-resolution dynamic climate model [the Liège Ocean Carbon Heteronomous model (LOCH)–Vegetation Continuous Description model (VECODE)–Earth System Models of Intermediate Complexity Climate deBilt (ECBILT)–Coupled Large-Scale Ice–Ocean model (CLIO)–Antarctic and Greenland Ice Sheet Model (AGISM) ensemble (LOVECLIM)], improving the model’s representation of eastern equatorial Pacific surface temperature variability. The anomaly coupling amplifies the surface diabatic atmospheric forcing within a Gaussian-shaped patch applied in the tropical Pacific Ocean. It is implemented with an improved predictive cloud scheme based on empirical relationships between cloud cover and key state variables. Results are presented from a perturbed physics ensemble systematically varying the parameters controlling the anomaly coupling patch size, location, and amplitude. The model’s optimal parameter combination is chosen through calibration against the observed power spectrum of monthly-mean surface temperature anomalies in the Niño-3 region. The calibrated model exhibits substantial improvement in equatorial Pacific interannual surface temperature variability and robustly reproduces El Niño–Southern Oscillation (ENSO)-like variability. The authors diagnose some of the key atmospheric and oceanic feedbacks in the model important for simulating ENSO-like variability, such as the positive Bjerknes feedback and the negative heat flux feedback, and analyze the recharge–discharge of the equatorial Pacific ocean heat content. They find LOVECLIM robustly captures important ocean dynamics related to thermocline adjustment and equatorial Kelvin waves. The calibrated model demonstrates some improvement in simulating atmospheric feedbacks, but the coupling between ocean and atmosphere is relatively weak. Because of the tractability of LOVECLIM and its consequent utility in exploring long-term climate variability and large ensemble perturbed physics experiments, improved representation of tropical Pacific ocean–atmosphere dynamics in the model may more readily allow for the investigation of the role of tropical Pacific ocean–atmosphere dynamics in past climate changes.


Sign in / Sign up

Export Citation Format

Share Document