Comments on "CHROTRAN 1.0: A mathematical and computational model for in situ heavy metal remediation in heterogeneous aquifers"

2017 ◽  
Author(s):  
Marc Walther
2017 ◽  
Author(s):  
Scott K. Hansen ◽  
Sachin Pandey ◽  
Satish Karra ◽  
Velimir V. Vesselinov

Abstract. Groundwater contamination by heavy metals is a critical environmental problem for which in situ remediation is frequently the only viable treatment option. For such interventions, a three-dimensional reactive transport model of relevant biogeochemical processes is invaluable. To this end, we developed a model, CHROTRAN, for in situ treatment, which includes full dynamics for five species: a heavy metal to be remediated, an electron donor, biomass, a nontoxic conservative bio-inhibitor, and a biocide. Direct abiotic reduction by donor-metal interaction as well as donor-driven biomass growth and bio-reduction are modeled, along with crucial processes such as donor sorption, bio-fouling and biomass death. Our software implementation handles heterogeneous flow fields, arbitrarily many chemical species and amendment injection points, and features full coupling between flow and reactive transport. We describe installation and usage and present two example simulations demonstrating its unique capabilities. One simulation suggests an unorthodox approach to remediation of Cr(VI) contamination.


2017 ◽  
Vol 10 (12) ◽  
pp. 4525-4538 ◽  
Author(s):  
Scott K. Hansen ◽  
Sachin Pandey ◽  
Satish Karra ◽  
Velimir V. Vesselinov

Abstract. Groundwater contamination by heavy metals is a critical environmental problem for which in situ remediation is frequently the only viable treatment option. For such interventions, a multi-dimensional reactive transport model of relevant biogeochemical processes is invaluable. To this end, we developed a model, chrotran, for in situ treatment, which includes full dynamics for five species: a heavy metal to be remediated, an electron donor, biomass, a nontoxic conservative bio-inhibitor, and a biocide. Direct abiotic reduction by donor–metal interaction as well as donor-driven biomass growth and bio-reduction are modeled, along with crucial processes such as donor sorption, bio-fouling, and biomass death. Our software implementation handles heterogeneous flow fields, as well as arbitrarily many chemical species and amendment injection points, and features full coupling between flow and reactive transport. We describe installation and usage and present two example simulations demonstrating its unique capabilities. One simulation suggests an unorthodox approach to remediation of Cr(VI) contamination.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ali Sayqal ◽  
Omar B. Ahmed

The pollution of toxic heavy metals is considered one of the most important environmental issues which has accelerated dramatically due to changing industrial activities. This review focuses on the most common methods, strategies, and biological approaches of heavy metal bioremediation. Also, it provides a general overview of the role of microorganisms in the bioremediation of heavy metals in polluted environments. Advanced methods of heavy metal remediation include physicochemical and biological methods; the latter can be further classified into in situ and ex situ bioremediation. The in situ process includes bioventing, biosparging, biostimulation, bioaugmentation, and phytoremediation. Ex situ bioremediation includes land farming, composting, biopiles, and bioreactors. Bioremediation uses naturally occurring microorganisms such as Pseudomonas, Sphingomonas, Rhodococcus, Alcaligenes, and Mycobacterium. Generally, bioremediation is of very less effort, less labor intensive, cheap, ecofriendly, sustainable, and relatively easy to implement. Most of the disadvantages of bioremediation relate to the slowness and time-consumption; furthermore, the products of biodegradation sometimes become more toxic than the original compound. The performance evaluation of bioremediation might be difficult as it has no acceptable endpoint. There is a need for further studies to develop bioremediation technologies in order to find more biological solutions for bioremediation of heavy metal contamination from different environmental systems.


2000 ◽  
Vol 42 (7-8) ◽  
pp. 335-343 ◽  
Author(s):  
S. Shiba ◽  
S. Hino ◽  
Y. Hirata ◽  
T. Seno

The operational variables of electrokinetic remediation have not been cleared yet, because this method is relatively new and is an innovative technique in the aquifer remediation. In order to investigate the operational variables of the electrokinetic remediation, a mathematical model has been constructed based on the physico chemical mass transport process of heavy metals in pore water of contaminated aquifer. The transport of the heavy metals is driven not only by the hydraulic flow due to the injection of the purge water but also by the electromigration due to the application of the electric potential gradient. The electric potential between anode and cathode is the important operational variable for the electrokinetic remediation. From the numerical simulations with use of this model it is confirmed that the remediation starts from the up stream anode and gradually the heavy metal is transported to the down stream cathode and drawn out through the purge water.


2017 ◽  
Vol 5 (2) ◽  
pp. 583-592 ◽  
Author(s):  
Faizal Soyekwo ◽  
Qiugen Zhang ◽  
Runsheng Gao ◽  
Yan Qu ◽  
Ruixue Lv ◽  
...  

Metal in situ surface functionalized PEI-g-MWCNT membranes are facilely prepared for nanofiltration of heavy metal ions in solution with high fluxes.


2011 ◽  
Vol 138-139 ◽  
pp. 1149-1155 ◽  
Author(s):  
Yi Dong Guan ◽  
Ye Hong Du ◽  
Zhen Dong Li ◽  
An Cheng Luo

This paper reports the concentration of heavy metals (Cr, Cu, Zn, Cd and Pb) in the soils and rices surrounding the abandoned rural waste dumping sites in Ningbo. Igeo (geoaccumulation index) was calculated to assess the contamination degree of heavy metals in soils. The mean contents of Cr, Cu, Cd, Zn and Pb of soils were 33.3, 24.1, 1.5, 118.9 and 45.6 mg/(kg DW) (dry weight), respectively. All of them were much higher than that of the reference value (i.e. CK), but there were no coherent trend of the metal contents within 1-120m distance from the dumping site. Igeo of heavy metals reveals the order of Cd>Cu>Cr>Pb>Zn, and the contamination assessment of soils using Igeo indicate the moderate Cd pollution, while the soils were unpolluted-moderately overall by Cr, Cu, Zn as well as Pb. The heavy metal contents in root, stem & leaf and rice grains were all remarkable higher than that of the CK at 20-120 m distances, and the heavy metal contents in root were evidently much higher than other plant parts, while those in rice grain were lowest, indicating the great bioaccumulation trend of heavy metals. Although the metal contents in the rice grain were within the legislation limit, its bioaccumulation trend of heavy metals was remarkable, whose contents were 4.38-fold for Cr, 1.76-fold for Cu, 1.28-fold for Zn, 2.67-fold for Cd and 3.03-fold for Pb higher than that of reference value, respectively. Finally, we proposed a decentralized in-situ restoration approach for the dumping sites.


Sign in / Sign up

Export Citation Format

Share Document