scholarly journals Baseline Evaluation of the Impact of Updates to the MIT Earth System Model on its Model Parameter Estimates

2018 ◽  
Author(s):  
Alex G. Libardoni ◽  
Chris E. Forest ◽  
Andrei P. Sokolov ◽  
Erwan Monier

Abstract. For over twenty years, the Massachusetts Institute of Technology Earth System Model (MESM) has been used extensively for climate change research. The model is under continuous development with components being added or updated. To provide transparency in the model development, we perform a baseline evaluation of the newest version by comparing model behavior and properties to the previous model version. In particular, the impacts resulting from updates to the land surface model component and the input forcings used in historical simulations of climate change are investigated. We run an 1800-member ensemble of MESM historical climate simulations where the model parameters that set climate sensitivity, ocean heat uptake, and the net anthropogenic aerosol forcing are systematically varied. By comparing model output to observed patterns of surface temperature changes, the linear trend in the increase in ocean heat content, and upper-air temperature changes, we derive probability distributions for the three model parameters. Furthermore, we run a 372-member ensemble of transient climate simulations where model forcings are held fixed, absent an increase in carbon dioxide concentrations at the rate of 1 % per year. From these runs, we derive a response surface for transient climate response and thermosteric sea level rise as a function of climate sensitivity and ocean heat uptake. We compare the probability distributions and response surfaces derived using the current version of MESM to the preceding version to evaluate the impact of the updated land surface model and forcing suite. We show that the probability distributions shift towards higher climate sensitivities and weaker aerosol forcing in response to the new forcing suite. The climate response surfaces are relatively unchanged between model versions, indicating that the updated land surface model has limited impact on temperature evolution in the model.

2018 ◽  
Vol 11 (8) ◽  
pp. 3313-3325 ◽  
Author(s):  
Alex G. Libardoni ◽  
Chris E. Forest ◽  
Andrei P. Sokolov ◽  
Erwan Monier

Abstract. For over 20 years, the Massachusetts Institute of Technology Earth System Model (MESM) has been used extensively for climate change research. The model is under continuous development with components being added and updated. To provide transparency in the model development, we perform a baseline evaluation by comparing model behavior and properties in the newest version to the previous model version. In particular, changes resulting from updates to the land surface model component and the input forcings used in historical simulations of climate change are investigated. We run an 1800-member ensemble of MESM historical climate simulations where the model parameters that set climate sensitivity, the rate of ocean heat uptake, and the net anthropogenic aerosol forcing are systematically varied. By comparing model output to observed patterns of surface temperature changes and the linear trend in the increase in ocean heat content, we derive probability distributions for the three model parameters. Furthermore, we run a 372-member ensemble of transient climate simulations where all model forcings are fixed and carbon dioxide concentrations are increased at the rate of 1 % year−1. From these runs, we derive response surfaces for transient climate response and thermosteric sea level rise as a function of climate sensitivity and ocean heat uptake. We show that the probability distributions shift towards higher climate sensitivities and weaker aerosol forcing when using the new model and that the climate response surfaces are relatively unchanged between model versions. Because the response surfaces are independent of the changes to the model forcings and similar between model versions with different land surface models, we suggest that the change in land surface model has limited impact on the temperature evolution in the model. Thus, we attribute the shifts in parameter estimates to the updated model forcings.


2019 ◽  
Author(s):  
Elias C. Massoud ◽  
Chonggang Xu ◽  
Rosie Fisher ◽  
Ryan Knox ◽  
Anthony Walker ◽  
...  

Abstract. Vegetation plays a key role in regulating global carbon cycles and is a key component of the Earth System Models (ESMs) aimed to project Earth's future climates. In the last decade, the vegetation component within ESMs has witnessed great progresses from simple 'big-leaf' approaches to demographically-structured approaches, which has a better representation of plant size, canopy structure, and disturbances. The demographically-structured vegetation models are typically controlled by a large number of parameters, and sensitivity analysis is generally needed to quantify the impact of each parameter on the model outputs for a better understanding of model behaviors. In this study, we use the Fourier Amplitude Sensitivity Test (FAST) to diagnose the Community Land Model coupled to the Ecosystem Demography Model, or CLM4.5(ED). We investigate the first and second order sensitivities of the model parameters to outputs that represent simulated growth and mortality as well as carbon fluxes and stocks. While the photosynthetic capacity parameter Vc,max25 is found to be important for simulated carbon stocks and fluxes, we also show the importance of carbon storage and allometry parameters, which are shown here to determine vegetation demography and carbon stocks through their impacts on survival and growth strategies. The results of this study highlights the importance of understanding the dynamics of the next generation of demographically-enabled vegetation models within ESMs toward improved model parameterization and model structure for better model fidelity.


2012 ◽  
Vol 9 (2) ◽  
pp. 2283-2319 ◽  
Author(s):  
V. Maggioni ◽  
E. N. Anagnostou ◽  
R. H. Reichle

Abstract. A sensitivity analysis is conducted to investigate the contribution of rainfall forcing relative to the model uncertainty in the prediction of soil moisture by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. This study depicts different sources of uncertainty, namely, errors in the model input (i.e., rainfall estimates from satellite remote sensing observations) and errors in the land surface model itself. Specifically, rainfall-forcing uncertainty is introduced using a stochastic error model that generates reference-like ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters using the generalized likelihood uncertainty estimation (GLUE) technique or by adding randomly generated noise to the model prognostic variables. While the first method only addresses parametric uncertainty, the second one addresses both structural and parametric uncertainty. Despite this, a reasonable spread in soil moisture is achieved with relatively few parameter perturbations through GLUE, whereas the same ensemble width requires stronger prognostic perturbations with the standard random perturbation method. The probability of encapsulating the reference soil moisture simulation increases when the rainfall forcing uncertainty and the model uncertainty approaches are combined (compared with using only rainfall uncertainty). This improvement is more significant when using the GLUE technique to perturb CLSM parameters as opposed to perturbing the CLSM prognostic variables.


2020 ◽  
pp. 052
Author(s):  
Jean-Christophe Calvet ◽  
Jean-Louis Champeaux

Cet article présente les différentes étapes des développements réalisés au CNRM des années 1990 à nos jours pour spatialiser à diverses échelles les simulations du modèle Isba des surfaces terrestres. Une attention particulière est portée sur l'intégration, dans le modèle, de données satellitaires permettant de caractériser la végétation. Deux façons complémentaires d'introduire de l'information géographique dans Isba sont présentées : cartographie de paramètres statiques et intégration au fil de l'eau dans le modèle de variables observables depuis l'espace. This paper presents successive steps in developments made at CNRM from the 1990s to the present-day in order to spatialize the simulations of the Isba land surface model at various scales. The focus is on the integration in the model of satellite data informative about vegetation. Two complementary ways to integrate geographic information in Isba are presented: mapping of static model parameters and sequential assimilation of variables observable from space.


2017 ◽  
Vol 18 (7) ◽  
pp. 2029-2042
Author(s):  
Tony E. Wong ◽  
William Kleiber ◽  
David C. Noone

Abstract Land surface models are notorious for containing many parameters that control the exchange of heat and moisture between land and atmosphere. Properly modeling the partitioning of total evapotranspiration (ET) between transpiration and evaporation is critical for accurate hydrological modeling, but depends heavily on the treatment of turbulence within and above canopies. Previous work has constrained estimates of evapotranspiration and its partitioning using statistical approaches that calibrate land surface model parameters by assimilating in situ measurements. These studies, however, are silent on the impacts of the accounting of uncertainty within the statistical calibration framework. The present study calibrates the aerodynamic, leaf boundary layer, and stomatal resistance parameters, which partially control canopy turbulent exchange and thus the evapotranspiration flux partitioning. Using an adaptive Metropolis–Hastings algorithm to construct a Markov chain of draws from the joint posterior distribution of these resistance parameters, an ensemble of model realizations is generated, in which latent and sensible heat fluxes and top soil layer temperature are optimized. A set of five calibration experiments demonstrate that model performance is sensitive to the accounting of various sources of uncertainty in the field observations and model output and that it is critical to account for model structural uncertainty. After calibration, the modeled fluxes and top soil layer temperature are largely free from bias, and this calibration approach successfully informs and characterizes uncertainty in these parameters, which is essential for model improvement and development. The key points of this paper are 1) a Markov chain Monte Carlo calibration approach successfully improves modeled turbulent fluxes; 2) ET partitioning estimates hinge on the representation of uncertainties in the model and data; and 3) despite these inherent uncertainties, constrained posterior estimates of ET partitioning emerge.


2015 ◽  
Vol 8 (6) ◽  
pp. 1857-1876 ◽  
Author(s):  
J. J. Guerrette ◽  
D. K. Henze

Abstract. Here we present the online meteorology and chemistry adjoint and tangent linear model, WRFPLUS-Chem (Weather Research and Forecasting plus chemistry), which incorporates modules to treat boundary layer mixing, emission, aging, dry deposition, and advection of black carbon aerosol. We also develop land surface and surface layer adjoints to account for coupling between radiation and vertical mixing. Model performance is verified against finite difference derivative approximations. A second-order checkpointing scheme is created to reduce computational costs and enable simulations longer than 6 h. The adjoint is coupled to WRFDA-Chem, in order to conduct a sensitivity study of anthropogenic and biomass burning sources throughout California during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign. A cost-function weighting scheme was devised to reduce the impact of statistically insignificant residual errors in future inverse modeling studies. Results of the sensitivity study show that, for this domain and time period, anthropogenic emissions are overpredicted, while wildfire emission error signs vary spatially. We consider the diurnal variation in emission sensitivities to determine at what time sources should be scaled up or down. Also, adjoint sensitivities for two choices of land surface model (LSM) indicate that emission inversion results would be sensitive to forward model configuration. The tools described here are the first step in conducting four-dimensional variational data assimilation in a coupled meteorology–chemistry model, which will potentially provide new constraints on aerosol precursor emissions and their distributions. Such analyses will be invaluable to assessments of particulate matter health and climate impacts.


Author(s):  
Nemesio Rodriguez-Fernandez ◽  
Patricia de Rosnay ◽  
Clement Albergel ◽  
Philippe Richaume ◽  
Filipe Aires ◽  
...  

The assimilation of Soil Moisture and Ocean Salinity (SMOS) data into the ECMWF (European Centre for Medium Range Weather Forecasts) H-TESSEL (Hydrology revised - Tiled ECMWF Scheme for Surface Exchanges over Land) model is presented. SMOS soil moisture (SM) estimates have been produced specifically by training a neural network with SMOS brightness temperatures as input and H-TESSEL model SM simulations as reference. This can help the assimilation of SMOS information in several ways: (1) the neural network soil moisture (NNSM) data have a similar climatology to the model, (2) no global bias is present with respect to the model even if regional differences can exist. Experiments performing joint data assimilation (DA) of NNSM, 2 metre air temperature and relative humidity or NNSM-only DA are discussed. The resulting SM was evaluated against a large number of in situ measurements of SM obtaining similar results to those of the model with no assimilation, even if significant differences were found from site to site. In addition, atmospheric forecasts initialized with H-TESSEL runs (without DA) or with the analysed SM were compared to measure of the impact of the satellite information. Although, NNSM DA has an overall neutral impact in the forecast in the Tropics, a significant positive impact was found in other areas and periods, especially in regions with limited in situ information. The joint NNSM, T2m and RH2m DA improves the forecast for all the seasons in the Southern Hemisphere. The impact is mostly due to T2m and RH2m, but SMOS NN DA alone also improves the forecast in July- September. In the Northern Hemisphere, the joint NNSM, T2m and RH2m DA improves the forecast in April-September, while NNSM alone has a significant positive effect in July-September. Furthermore, forecasting skill maps show that SMOS NNSM improves the forecast in North America and in Northern Asia for up to 72 hours lead time.


2021 ◽  
Author(s):  
Eduardo Emilio Sanchez-Leon ◽  
Natascha Brandhorst ◽  
Bastian Waldowski ◽  
Ching Pui Hung ◽  
Insa Neuweiler ◽  
...  

<p>The success of data assimilation systems strongly depends on the suitability of the generated ensembles. While in theory data assimilation should correct the states of an ensemble of models, especially if model parameters are included in the update, its effectiveness will depend on many factors, such as ensemble size, ensemble spread, and the proximity of the prior ensemble simulations to the data. In a previous study, we generated an ensemble-based data-assimilation framework to update model states and parameters of a coupled land surface-subsurface model. As simulation system we used the Terrestrial Systems Modeling Platform TerrSysMP, with the community land-surface model (CLM) coupled to the subsurface model Parflow. In this work, we used the previously generated ensemble to assess the effect of uncertain input forcings (i.e. precipitation), unknown subsurface parameterization, and/or plant physiology in data assimilation. The model domain covers a rectangular area of 1×5km<sup>2</sup>, with a uniform depth of 50m. The subsurface material is divided into four units, and the top soil layers consist of three different soil types with different vegetation. Streams are defined along three of the four boundaries of the domain. For data assimilation, we used the TerrsysMP PDAF framework. We defined a series of data assimilation experiments in which sources of uncertainty were considered individually, and all additional settings of the ensemble members matched those of the reference. To evaluate the effect of all sources of uncertainty combined, we designed an additional test in which the input forcings, subsurface parameters, and the leaf area index of the ensemble were all perturbed. In all these tests, the reference model had homogenous subsurface units and the same grid resolution as all models of the ensemble. We used point measurements of soil moisture in all data assimilation experiments. We concluded that precipitation dominates the dynamics of the simulations, and perturbing the precipitation fields for the ensemble have a major impact in the performance of the assimilation. Still, considerable improvements are observed compared to open-loop simulations. In contrast, the effect of variable plant physiology was minimal, with no visible improvement in relevant fluxes such as evapotranspiration. As expected, improved ensemble predictions are propagated longer in time when parameters are included in the update.</p>


Sign in / Sign up

Export Citation Format

Share Document