scholarly journals FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 2: model applications

2020 ◽  
Author(s):  
Andrew T. Prata ◽  
Leonardo Mingari ◽  
Arnau Folch ◽  
Giovanni Macedonio ◽  
Antonio Costa

Abstract. This manuscript presents different application cases and validation results of the latest version release of the FALL3D-8.0 model, an open-source atmospheric transport model. The code has been redesigned from scratch to incorporate different categories of species and to overcome legacy issues that precluded its preparation towards extreme-scale computing. Validation results are shown for long-range dispersal of fine volcanic ash and SO2 clouds, tephra fallout deposits and dispersal and ground deposition of radionuclides. The first two examples (i.e. the 2011 Puyehue-Cordón Caulle and 2019 Raikoke eruptions) make use of geostationary satellite retrievals for two purposes: first, to furnish an initial data insertion condition for the model; and second, to validate the time series of model outputs against the satellite retrievals. The metrics used to validate the model simulations of volcanic ash and SO2 are the Structure, Amplitude and Location (SAL) metric and the Figure of Merit in Space (FMS). The other two application cases are validated with scattered ground-based observations of deposit load and local particle grain size distributions from the 23 February 2013 Mt. Etna eruption and with measurements from the Radioactivity Environmental Monitoring (REM) database during the 1986 Chernobyl nuclear accident. Simulation results indicate that FALL3D-8.0 outperforms previous code versions both in terms of model accuracy and code performance. We also find that simulations initialised with the new data insertion scheme consistently improve agreement with satellite retrievals at all lead times out to 48 hours for both SO2 and long-range fine ash simulations.

2021 ◽  
Vol 14 (1) ◽  
pp. 409-436
Author(s):  
Andrew T. Prata ◽  
Leonardo Mingari ◽  
Arnau Folch ◽  
Giovanni Macedonio ◽  
Antonio Costa

Abstract. This paper presents model validation results for the latest version release of the FALL3D atmospheric transport model. The code has been redesigned from scratch to incorporate different categories of species and to overcome legacy issues that precluded its preparation towards extreme-scale computing. The model validation is based on the new FALL3D-8.0 test suite, which comprises a set of four real case studies that encapsulate the major features of the model; namely, the simulation of long-range fine volcanic ash dispersal, volcanic SO2 dispersal, tephra fallout deposits and the dispersal and deposition of radionuclides. The first two test suite cases (i.e. the June 2011 Puyehue-Cordón Caulle ash cloud and the June 2019 Raikoke SO2 cloud) are validated against geostationary satellite retrievals and demonstrate the new FALL3D data insertion scheme. The metrics used to validate the volcanic ash and SO2 simulations are the structure, amplitude and location (SAL) metric and the figure of merit in space (FMS). The other two test suite cases (i.e. the February 2013 Mt. Etna ash cloud and associated tephra fallout deposit, and the dispersal of radionuclides resulting from the 1986 Chernobyl nuclear accident) are validated with scattered ground-based observations of deposit load and local particle grain size distributions and with measurements from the Radioactivity Environmental Monitoring database. For validation of tephra deposit loads and radionuclides, we use two variants of the normalised root-mean-square error metric. We find that FALL3D-8.0 simulations initialised with data insertion consistently improve agreement with satellite retrievals at all lead times up to 48 h for both volcanic ash and SO2 simulations. In general, SAL scores lower than 1.5 and FMS scores greater than 0.40 indicate acceptable agreement with satellite retrievals of volcanic ash and SO2. In addition, we show very good agreement, across several orders of magnitude, between the model and observations for the 2013 Mt. Etna and 1986 Chernobyl case studies. Our results, along with the validation datasets provided in the publicly available test suite, form the basis for future improvements to FALL3D (version 8 or later) and also allow for model intercomparison studies.


1995 ◽  
Vol 34 (7) ◽  
pp. 1653-1665 ◽  
Author(s):  
Hirohiko Ishikawa

Abstract The effect of horizontal diffusion on the long-range transport simulation is examined with a Lagrangian particle transport model. The transport of radioactivity released from Chernobyl is simulated by the model with different values of horizontal diffusivity. The computed concentrations are statistically compared with measured concentration. The best simulation is found when the magnitude of the horizontal diffusivity is between 3.3 × 104 and 1.0 × 105 m2 s−1. The performance of empirical formulas of horizontal diffusion, in which mean-square displacement σy is specified as a function of time, is also examined. A part of measured concentrations, which are relatively low concentrations, cannot be explained by transport and diffusion only. It is shown that these measured concentrations can be explained by resuspension of deposited radioactivity.


2011 ◽  
Vol 11 (4) ◽  
pp. 1549-1564 ◽  
Author(s):  
A. K. Halse ◽  
M. Schlabach ◽  
S. Eckhardt ◽  
A. Sweetman ◽  
K. C. Jones ◽  
...  

Abstract. Passive air samplers (PAS) were deployed at 86 European background sites during summer 2006 in order (i) to gain further insight into spatial patterns of persistent organic pollutants (POPs) in European background air and, (ii) to evaluate PAS as an alternative sampling technique under EMEP (Co-operative programme for monitoring and evaluation of the long-range transmissions of air pollutants in Europe). The samples were analyzed for selected PCBs, HCHs, DDTs, HCB, PAHs and chlordanes, and air concentrations were calculated on the basis of losses of performance reference compounds. Air concentrations of PCBs were generally lowest in more remote areas of northern Europe with elevated levels in more densely populated areas. γ-HCH was found at elevated levels in more central parts of Europe, whereas α-HCH, β-HCH and DDTs showed higher concentrations in the south-eastern part. There was no clear spatial pattern in the concentrations for PAHs, indicative of influence by local sources, rather than long range atmospheric transport (LRAT). HCB was evenly distributed across Europe, while the concentrations of chlordanes were typically low or non-detectable. A comparison of results obtained on the basis of PAS and active air sampling (AAS) illustrated that coordinated PAS campaigns have the potential serve as useful inter-comparison exercises within and across existing monitoring networks. The results also highlighted limitations of the current EMEP measurement network with respect to spatial coverage. We finally adopted an existing Lagrangian transport model (FLEXPART) as recently modified to incorporate key processes relevant for POPs to evaluate potential source regions affecting observed concentrations at selected sites. Using PCB-28 as an example, the model predicted concentrations which agreed within a factor of 3 with PAS measurements for all except 1 out of the 17 sites selected for this analysis.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 467
Author(s):  
Rocío Baró ◽  
Christian Maurer ◽  
Jerome Brioude ◽  
Delia Arnold ◽  
Marcus Hirtl

This paper demonstrates the environmental impacts of the wildfires occurring at the beginning of April 2020 in and around the highly contaminated Chernobyl Exclusion Zone (CEZ). Due to the critical fire location, concerns arose about secondary radioactive contamination potentially spreading over Europe. The impact of the fire was assessed through the evaluation of fire plume dispersion and re-suspension of the radionuclide Cs-137, whereas, to assess the smoke plume effect, a WRF-Chem simulation was performed and compared to Tropospheric Monitoring Instrument (TROPOMI) satellite columns. The results show agreement of the simulated black carbon and carbon monoxide plumes with the plumes as observed by TROPOMI, where pollutants were also transported to Belarus. From an air quality and health perspective, the wildfires caused extremely bad air quality over Kiev, where the WRF-Chem model simulated mean values of PM2.5 up to 300 µg/m3 (during the first fire outbreak) over CEZ. The re-suspension of Cs-137 was assessed by a Bayesian inverse modelling approach using FLEXPART as the atmospheric transport model and Ukraine observations, yielding a total release of 600 ± 200 GBq. The increase in both smoke and Cs-137 emissions was only well correlated on the 9 April, likely related to a shift of the focus area of the fires. From a radiological point of view even the highest Cs-137 values (average measured or modelled air concentrations and modelled deposition) at the measurement site closest to the Chernobyl Nuclear Power Plant, i.e., Kiev, posed no health risk.


2016 ◽  
Vol 144 (2) ◽  
pp. 575-589 ◽  
Author(s):  
S. Lu ◽  
H. X. Lin ◽  
A. W. Heemink ◽  
G. Fu ◽  
A. J. Segers

Abstract Volcanic ash forecasting is a crucial tool in hazard assessment and operational volcano monitoring. Emission parameters such as plume height, total emission mass, and vertical distribution of the emission plume rate are essential and important in the implementation of volcanic ash models. Therefore, estimation of emission parameters using available observations through data assimilation could help to increase the accuracy of forecasts and provide reliable advisory information. This paper focuses on the use of satellite total-ash-column data in 4D-Var based assimilations. Experiments show that it is very difficult to estimate the vertical distribution of effective volcanic ash injection rates from satellite-observed ash columns using a standard 4D-Var assimilation approach. This paper addresses the ill-posed nature of the assimilation problem from the perspective of a spurious relationship. To reduce the influence of a spurious relationship created by a radiate observation operator, an adjoint-free trajectory-based 4D-Var assimilation method is proposed, which is more accurate to estimate the vertical profile of volcanic ash from volcanic eruptions. The method seeks the optimal vertical distribution of emission rates of a reformulated cost function that computes the total difference between simulated and observed ash columns. A 3D simplified aerosol transport model and synthetic satellite observations are used to compare the results of both the standard method and the new method.


Sign in / Sign up

Export Citation Format

Share Document