scholarly journals SPEAD 1.0 – A model for Simulating Plankton Evolution with Adaptive Dynamics in a two-trait continuous fitness landscape applied to the Sargasso Sea

2020 ◽  
Author(s):  
Guillaume Le Gland ◽  
Sergio M. Vallina ◽  
S. Lan Smith ◽  
Pedro Cermeño

Abstract. Diversity plays a key role in the adaptive capacities of marine ecosystems to environmental changes. However, modeling phytoplankton trait diversity remains challenging due to the strength of the competitive exclusion of sub-optimal phenotypes. Trait diffusion (TD) is a recently developed approach to sustain diversity in plankton models by allowing the evolution of functional traits at ecological timescales. In this study, we present a model for Simulating Plankton Evolution with Adaptive Dynamics (SPEAD), where phytoplankton phenotypes characterized by two traits, nitrogen half-saturation constant and optimal temperature, can mutate at each generation using the TD mechanism. SPEAD does not resolve the different phenotypes as discrete entities, computing instead six aggregate properties: total phytoplankton biomass, mean value of each trait, trait variances, and inter-trait covariance of a single population in a continuous trait space. Therefore SPEAD resolves the dynamics of the population's continuous trait distribution by solving its statistical moments, where the variances of trait values represent the diversity of ecotypes. The ecological model is coupled to a vertically-resolved (1D) physical environment, and therefore the adaptive dynamics of the simulated phytoplankton population are driven by seasonal variations in vertical mixing, nutrient concentration, water temperature, and solar irradiance. The simulated bulk properties are validated by observations from BATS in the Sargasso Sea. We find that moderate mutation rates sustain trait diversity at decadal timescales and soften the almost total inter-trait correlation induced by the environment alone, without reducing the annual primary production or promoting permanently maladapted phenotypes, as occur with high mutation rates. As a way to evaluate the performance of the continuous-trait approximation, we also compare the solutions of SPEAD to the solutions of a classical discrete entities approach, both approaches including TD as a mechanism to sustain trait variance. We only find minor discrepancies between the continuous model SPEAD and the discrete model, the computational cost of SPEAD being lower by two orders of magnitude. Therefore SPEAD should be an ideal eco-evolutionary plankton model to be coupled to a general circulation model (GCM) at the global ocean.

2021 ◽  
Vol 14 (4) ◽  
pp. 1949-1985
Author(s):  
Guillaume Le Gland ◽  
Sergio M. Vallina ◽  
S. Lan Smith ◽  
Pedro Cermeño

Abstract. Diversity plays a key role in the adaptive capacity of marine ecosystems to environmental changes. However, modelling the adaptive dynamics of phytoplankton traits remains challenging due to the competitive exclusion of sub-optimal phenotypes and the complexity of evolutionary processes leading to optimal phenotypes. Trait diffusion (TD) is a recently developed approach to sustain diversity in plankton models by introducing mutations, therefore allowing the adaptive evolution of functional traits to occur at ecological timescales. In this study, we present a model called Simulating Plankton Evolution with Adaptive Dynamics (SPEAD) that resolves the eco-evolutionary processes of a multi-trait plankton community. The SPEAD model can be used to evaluate plankton adaptation to environmental changes at different timescales or address ecological issues affected by adaptive evolution. Phytoplankton phenotypes in SPEAD are characterized by two traits, the nitrogen half-saturation constant and optimal temperature, which can mutate at each generation using the TD mechanism. SPEAD does not resolve the different phenotypes as discrete entities, instead computing six aggregate properties: total phytoplankton biomass, the mean value of each trait, trait variances, and the inter-trait covariance of a single population in a continuous trait space. Therefore, SPEAD resolves the dynamics of the population's continuous trait distribution by solving its statistical moments, wherein the variances of trait values represent the diversity of ecotypes. The ecological model is coupled to a vertically resolved (1D) physical environment, and therefore the adaptive dynamics of the simulated phytoplankton population are driven by seasonal variations in vertical mixing, nutrient concentration, water temperature, and solar irradiance. The simulated bulk properties are validated by observations from Bermuda Atlantic Time-series Studies (BATS) in the Sargasso Sea. We find that moderate mutation rates sustain trait diversity at decadal timescales and soften the almost total inter-trait correlation induced by the environment alone, without reducing the annual primary production or promoting permanently maladapted phenotypes, as occur with high mutation rates. As a way to evaluate the performance of the continuous trait approximation, we also compare the solutions of SPEAD to the solutions of a classical discrete entities approach, with both approaches including TD as a mechanism to sustain trait variance. We only find minor discrepancies between the continuous model SPEAD and the discrete model, with the computational cost of SPEAD being lower by 2 orders of magnitude. Therefore, SPEAD should be an ideal eco-evolutionary plankton model to be coupled to a general circulation model (GCM) of the global ocean.


2016 ◽  
Vol 29 (24) ◽  
pp. 8763-8781 ◽  
Author(s):  
Paul D. Williams ◽  
Nicola J. Howe ◽  
Jonathan M. Gregory ◽  
Robin S. Smith ◽  
Manoj M. Joshi

Abstract In climate simulations, the impacts of the subgrid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the subgrid variability in a computationally inexpensive manner. This study shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere–ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a nonzero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations.


1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


2016 ◽  
Vol 13 (2) ◽  
pp. 379 ◽  
Author(s):  
Italo Masotti ◽  
Sauveur Belviso ◽  
Laurent Bopp ◽  
Alessandro Tagliabue ◽  
Eva Bucciarelli

Environmental context Models are needed to predict the importance of the changes in marine emissions of dimethylsulfide (DMS) in response to ocean warming, increased stratification and acidification, and to evaluate the potential effects on the Earth’s climate. We use complementary simulations to further our understanding of the marine cycle of DMS in subtropical waters, and show that a lack of phosphorus may exert a more important control on surface DMS concentrations than an excess of light. Abstract The occurrence of a summer DMS paradox in the vast subtropical gyres is a strong matter of debate because approaches using discrete measurements, climatological data and model simulations yielded contradictory results. The major conclusion of the first appraisal of prognostic ocean DMS models was that such models need to give more weight to the direct effect of environmental forcings (e.g. irradiance) on DMS dynamics to decouple them from ecological processes. Here, the relative role of light and phosphorus on summer DMS dynamics in subtropical waters is assessed using the ocean general circulation and biogeochemistry model NEMO-PISCES in which macronutrient concentrations were restored to monthly climatological data values to improve the representation of phosphate concentrations. Results show that the vertical and temporal decoupling between chlorophyll and DMS concentrations observed in the Sargasso Sea during the summer months is captured by the model. Additional sensitivity tests show that the simulated control of phosphorus on surface DMS concentrations in the Sargasso Sea is much more important than that of light. By extending the analysis to the whole North Atlantic Ocean, we show that the longitudinal distribution of DMS during summer is asymmetrical and that a correlation between the solar radiation dose and DMS concentrations only occurs in the Sargasso Sea. The lack of a widespread summer DMS paradox in our model simulation as well as in the comparison of discrete and climatological data could be due to the limited occurrence of phosphorus limitation in the global ocean.


2012 ◽  
Vol 8 (5) ◽  
pp. 1581-1598 ◽  
Author(s):  
V. Mariotti ◽  
L. Bopp ◽  
A. Tagliabue ◽  
M. Kageyama ◽  
D. Swingedouw

Abstract. Marine sediments records suggest large changes in marine productivity during glacial periods, with abrupt variations especially during the Heinrich events. Here, we study the response of marine biogeochemistry to such an event by using a biogeochemical model of the global ocean (PISCES) coupled to an ocean-atmosphere general circulation model (IPSL-CM4). We conduct a 400-yr-long transient simulation under glacial climate conditions with a freshwater forcing of 0.1 Sv applied to the North Atlantic to mimic a Heinrich event, alongside a glacial control simulation. To evaluate our numerical results, we have compiled the available marine productivity records covering Heinrich events. We find that simulated primary productivity and organic carbon export decrease globally (by 16% for both) during a Heinrich event, albeit with large regional variations. In our experiments, the North Atlantic displays a significant decrease, whereas the Southern Ocean shows an increase, in agreement with paleo-productivity reconstructions. In the Equatorial Pacific, the model simulates an increase in organic matter export production but decreased biogenic silica export. This antagonistic behaviour results from changes in relative uptake of carbon and silicic acid by diatoms. Reasonable agreement between model and data for the large-scale response to Heinrich events gives confidence in models used to predict future centennial changes in marine production. In addition, our model allows us to investigate the mechanisms behind the observed changes in the response to Heinrich events.


2021 ◽  
Author(s):  
Moritz Kreuzer ◽  
Ronja Reese ◽  
Willem Huiskamp ◽  
Stefan Petri ◽  
Torsten Albrecht ◽  
...  

<p>The past and future evolution of the Antarctic Ice Sheet is largely controlled by interactions between the ocean and floating ice shelves. To investigate these interactions, coupled ocean and ice sheet model configurations are required. Previous modelling studies have mostly relied on high resolution configurations, limiting these studies to individual glaciers or regions over short time scales of decades to a few centuries. To study global and long term interactions, we developed a framework to couple the dynamic ice sheet model PISM with the global ocean general circulation model MOM5 via the ice-shelf cavity module PICO. Since ice-shelf cavities are not resolved by MOM5, but parameterized with the box model PICO, the framework allows the ice sheet and ocean model to be run at resolution of 16 km and 3 degrees, respectively. We present first results from our coupled setup and discuss stability, feedbacks, and interactions of the Antarctic Ice Sheet and the global ocean system on millennial time scales.</p>


2020 ◽  
Vol 71 (1) ◽  
pp. 43-57
Author(s):  
Kai Logemann ◽  
Leonidas Linardakis ◽  
Peter Korn ◽  
Corinna Schrum

AbstractThe global tide is simulated with the global ocean general circulation model ICON-O using a newly developed tidal module, which computes the full tidal potential. The simulated coastal M2 amplitudes, derived by a discrete Fourier transformation of the output sea level time series, are compared with the according values derived from satellite altimetry (TPXO-8 atlas). The experiments are repeated with four uniform and sixteen irregular triangular grids. The results show that the quality of the coastal tide simulation depends primarily on the coastal resolution and that the ocean interior can be resolved up to twenty times lower without causing considerable reductions in quality. The mesh transition zones between areas of different resolutions are formed by cell bisection and subsequent local spring optimisation tolerating a triangular cell’s maximum angle up to 84°. Numerical problems with these high-grade non-equiangular cells were not encountered. The results emphasise the numerical feasibility and potential efficiency of highly irregular computational meshes used by ICON-O.


2019 ◽  
Vol 12 (8) ◽  
pp. 3745-3758 ◽  
Author(s):  
François Massonnet ◽  
Antoine Barthélemy ◽  
Koffi Worou ◽  
Thierry Fichefet ◽  
Martin Vancoppenolle ◽  
...  

Abstract. The ice thickness distribution (ITD) is one of the core constituents of modern sea ice models. The ITD accounts for the unresolved spatial variability of sea ice thickness within each model grid cell. While there is a general consensus on the added physical realism brought by the ITD, how to discretize it remains an open question. Here, we use the ocean–sea ice general circulation model, Nucleus for European Modelling of the Ocean (NEMO) version 3.6 and Louvain-la-Neuve sea Ice Model (LIM) version 3 (NEMO3.6-LIM3), forced by atmospheric reanalyses to test how the ITD discretization (number of ice thickness categories, positions of the category boundaries) impacts the simulated mean Arctic and Antarctic sea ice states. We find that winter ice volumes in both hemispheres increase with the number of categories and attribute that increase to a net enhancement of basal ice growth rates. The range of simulated mean winter volumes in the various experiments amounts to ∼30 % and ∼10 % of the reference values (run with five categories) in the Arctic and Antarctic, respectively. This suggests that the way the ITD is discretized has a significant influence on the model mean state, all other things being equal. We also find that the existence of a thick category with lower bounds at ∼4 and ∼2 m for the Arctic and Antarctic, respectively, is a prerequisite for allowing the storage of deformed ice and therefore for fostering thermodynamic growth in thinner categories. Our analysis finally suggests that increasing the resolution of the ITD without changing the lower limit of the upper category results in small but not negligible variations of ice volume and extent. Our study proposes for the first time a bi-polar process-based explanation of the origin of mean sea ice state changes when the ITD discretization is modified. The sensitivity experiments conducted in this study, based on one model, emphasize that the choice of category positions, especially of thickest categories, has a primary influence on the simulated mean sea ice states while the number of categories and resolution have only a secondary influence. It is also found that the current default discretization of the NEMO3.6-LIM3 model is sufficient for large-scale present-day climate applications. In all cases, the role of the ITD discretization on the simulated mean sea ice state has to be appreciated relative to other influences (parameter uncertainty, forcing uncertainty, internal climate variability).


Sign in / Sign up

Export Citation Format

Share Document