scholarly journals Quantifying and attributing time step sensitivities in present-day climate simulations conducted with EAMv1

2020 ◽  
Author(s):  
Hui Wan ◽  
Shixuan Zhang ◽  
Philip J. Rasch ◽  
Vincent E. Larson ◽  
Xubin Zeng ◽  
...  

Abstract. This study assesses the relative importance of time integration error in present-day climate simulations conducted with the atmosphere component of the Energy Exascale Earth System Model version 1 (EAMv1) at 1-degree horizontal resolution. We show that a factor-of-6 reduction of time step size in all major parts of the model leads to significant changes in the long-term mean climate. Examples of such changes include warming in the lower troposphere, cooling in the tropical and subtropical upper troposphere, as well as decreases of relative humidity throughout the troposphere accompanied by cloud fraction decreases. These changes imply that the reduction of temporal truncation errors leads to a notable although unsurprising degradation of agreement between the simulated and observed present-day climate; the model would require retuning to regain optimal climate fidelity in the absence of those truncation errors. A coarse-grained attribution of the time step sensitivities is carried out by separately shortening time steps used in various components of EAM or by revising the numerical coupling between some processes. Our analysis leads to the counter-intuitive finding that the marked decreases in the subtropical low-cloud fraction and total cloud radiative effect are caused not by the step size used for the collectively subcycled turbulence, shallow convection and stratiform cloud macro- and microphysics parameterizations but by the step sizes used outside the subcycles. Further analysis suggests that the coupling frequency between the subcycles and the rest of EAM has a substantial impact on the marine stratocumulus decks while the deep convection parameterization has a significant impact on trade cumulus. The step size of the cloud macro- and microphysics subcycles appears to have a primary impact on cloud fraction at most latitudes in the upper troposphere as well as in the mid-latitude near-surface layers. Impacts of step sizes used by the dynamical core and radiation appear to be relatively small. These results provide useful clues to help better understand the root causes of time step sensitivities in EAM. The experimentation strategy used here can also provide a pathway for other models to identify and reduce time integration errors.

2021 ◽  
Vol 14 (4) ◽  
pp. 1921-1948
Author(s):  
Hui Wan ◽  
Shixuan Zhang ◽  
Philip J. Rasch ◽  
Vincent E. Larson ◽  
Xubin Zeng ◽  
...  

Abstract. This study assesses the relative importance of time integration error in present-day climate simulations conducted with the atmosphere component of the Energy Exascale Earth System Model version 1 (EAMv1) at 1∘ horizontal resolution. We show that a factor-of-6 reduction of time step size in all major parts of the model leads to significant changes in the long-term mean climate. Examples of changes in 10-year mean zonal averages include the following: up to 0.5 K of warming in the lower troposphere and cooling in the tropical and subtropical upper troposphere, 1 %–10 % decreases in relative humidity throughout the troposphere, and 10 %–20 % decreases in cloud fraction in the upper troposphere and decreases exceeding 20 % in the subtropical lower troposphere. In terms of the 10-year mean geographical distribution, systematic decreases of 20 %–50 % are seen in total cloud cover and cloud radiative effects in the subtropics. These changes imply that the reduction of temporal truncation errors leads to a notable although unsurprising degradation of agreement between the simulated and observed present-day climate; to regain optimal climate fidelity in the absence of those truncation errors, the model would require retuning. A coarse-grained attribution of the time step sensitivities is carried out by shortening time steps used in various components of EAM or by revising the numerical coupling between some processes. Our analysis leads to the finding that the marked decreases in the subtropical low-cloud fraction and total cloud radiative effect are caused not by the step size used for the collectively subcycled turbulence, shallow convection, and stratiform cloud macrophysics and microphysics parameterizations but rather by the step sizes used outside those subcycles. Further analysis suggests that the coupling frequency between the subcycles and the rest of EAM significantly affects the subtropical marine stratocumulus decks, while deep convection has significant impacts on trade cumulus. The step size of the cloud macrophysics and microphysics subcycle itself appears to have a primary impact on cloud fraction in the upper troposphere and also in the midlatitude near-surface layers. Impacts of step sizes used by the dynamical core and the radiation parameterization appear to be relatively small. These results provide useful clues for future studies aiming at understanding and addressing the root causes of sensitivities to time step sizes and process coupling frequencies in EAM. While this study focuses on EAMv1 and the conclusions are likely model-specific, the presented experimentation strategy has general value for weather and climate model development, as the methodology can help researchers identify and understand sources of time integration error in sophisticated multi-component models.


2019 ◽  
Vol 86 (8) ◽  
Author(s):  
Weicheng Huang ◽  
Mohammad Khalid Jawed

Discrete elastic rods (DER) algorithm presents a computationally efficient means of simulating the geometrically nonlinear dynamics of elastic rods. However, it can suffer from artificial energy loss during the time integration step. Our approach extends the existing DER technique by using a different time integration scheme—we consider a second-order, implicit Newmark-beta method to avoid energy dissipation. This treatment shows better convergence with time step size, specially when the damping forces are negligible and the structure undergoes vibratory motion. Two demonstrations—a cantilever beam and a helical rod hanging under gravity—are used to show the effectiveness of the modified discrete elastic rods simulator.


2010 ◽  
Vol 138 (8) ◽  
pp. 3333-3341 ◽  
Author(s):  
Katherine J. Evans ◽  
Mark A. Taylor ◽  
John B. Drake

Abstract A fully implicit (FI) time integration method has been implemented into a spectral finite-element shallow-water equation model on a sphere, and it is compared to existing fully explicit leapfrog and semi-implicit methods for a suite of test cases. This experiment is designed to determine the time step sizes that minimize simulation time while maintaining sufficient accuracy for these problems. For test cases without an analytical solution from which to compare, it is demonstrated that time step sizes 30–60 times larger than the gravity wave stability limits and 6–20 times larger than the advective-scale stability limits are possible using the FI method without a loss in accuracy, depending on the problem being solved. For a steady-state test case, the FI method produces error within machine accuracy limits as with existing methods, but using an arbitrarily large time step size.


Author(s):  
Y.-M. Lee ◽  
J.-S. Wu ◽  
T.-F. Jiang ◽  
Y.-S. Chen

In this paper, interactions of a linearly polarized ultra short-pulsed intense laser with a single H2+ molecule at various angles of incidence are studied by directly solving the time-dependent three-dimensional Schrodinger equation (TDSE), assuming Born-Oppenheimer approximation. An explicit stagger-time algorithm is employed for time integration of the TDSE, in which the real and imaginary parts of the wave function are defined at alternative times, while a cell-centered finite-volume method is utilized for spatial discretization of the TDSE on Cartesian grids. The TDSE solver is then parallelized using domain decomposition method on distributed memory machines by applying a multi-level graph-partitioning technique. The solver is applied to simulate laser-molecular interaction with test conditions including: laser intensity of 0.5*1014 W/cm2, wavelength of 800 nm, three pulses in time, angle of incidence of 0–90° and inter-nuclear distance of 2 a.u.. Simulation conditions include 4 million hexahedral cells, 90 a.u. long in z direction, and time-step size of 0.005 a.u.. Ionization rates, harmonic spectra and instantaneous distribution of electron densities are then obtained from the solution of the TDSE. Future possible extension of the present method is also outlined at the end of this paper.


2019 ◽  
Vol 54 (2) ◽  
pp. 116-129 ◽  
Author(s):  
Roberto Ortega ◽  
Geraldine Farías ◽  
Marcela Cruchaga ◽  
Matías Rivero ◽  
Mariano Vázquez ◽  
...  

The focus of this work is on the computational modeling of a pendulum made of a hyperelastic material and the corresponding experimental validation with the aim of contributing to the study of a material commonly used in seismic absorber devices. From the proposed dynamics experiment, the motion of the pendulum is recorded using a high-speed camera. The evolution of the pendulum’s positions is recovered using a capturing motion technique by tracking markers. The simulation of the problem is developed in the framework of a parallel multi-physics code. Particular emphasis is placed on the analysis of the Newmark integration scheme and the use of Rayleigh damping model. In particular, the time step size effect is analyzed. A strong time step size dependency is obtained for dissipative time integration schemes, while the Rayleigh damping formulation without time integration dissipation shows time step–independent results when convergence is achieved.


2011 ◽  
Vol 10 (4) ◽  
pp. 844-866 ◽  
Author(s):  
Jingyan Yue ◽  
Guangwei Yuan

AbstractFor a new nonlinear iterative method named as Picard-Newton (P-N) iterative method for the solution of the time-dependent reaction-diffusion systems, which arise in non-equilibrium radiation diffusion applications, two time step control methods are investigated and a study of temporal accuracy of a first order time integration is presented. The non-equilibrium radiation diffusion problems with flux limiter are considered, which appends pesky complexity and nonlinearity to the diffusion coefficient. Numerical results are presented to demonstrate that compared with Picard method, for a desired accuracy, significant increase in solution efficiency can be obtained by Picard-Newton method with the suitable time step size selection.


Author(s):  
Olivier A. Bauchau ◽  
Alexander Epple ◽  
Carlo L. Bottasso

This paper addresses practical issues associated with the numerical enforcement of constraints in flexible multibody systems, which are characterized by index-3 differential algebraic equations (DAEs). The need to scale the equations of motion is emphasized; in the proposed approach, they are scaled based on simple physical arguments, and an augmented Lagrangian term is added to the formulation. Time discretization followed by a linearization of the resulting equations leads to a Jacobian matrix that is independent of the time step size, h; hence, the condition number of the Jacobian and error propagation are both O(h0): the numerical solution of index-3 DAEs behaves as in the case of regular ordinary differential equations (ODEs). Since the scaling factor depends on the physical properties of the system, the proposed scaling decreases the dependency of this Jacobian on physical properties, further improving the numerical conditioning of the resulting linearized equations. Because the scaling of the equations is performed before the time and space discretizations, its benefits are reaped for all time integration schemes. The augmented Lagrangian term is shown to be indispensable if the solution of the linearized system of equations is to be performed without pivoting, a requirement for the efficient solution of the sparse system of linear equations. Finally, a number of numerical examples demonstrate the efficiency of the proposed approach to scaling.


2012 ◽  
Vol 5 (6) ◽  
pp. 1395-1405 ◽  
Author(s):  
M. Schlegel ◽  
O. Knoth ◽  
M. Arnold ◽  
R. Wolke

Abstract. Explicit time integration methods are characterised by a small numerical effort per time step. In the application to multiscale problems in atmospheric modelling, this benefit is often more than compensated by stability problems and step size restrictions resulting from stiff chemical reaction terms and from a locally varying Courant-Friedrichs-Lewy (CFL) condition for the advection terms. Splitting methods may be applied to efficiently combine implicit and explicit methods (IMEX splitting). Complementarily multirate time integration schemes allow for a local adaptation of the time step size to the grid size. In combination, these approaches lead to schemes which are efficient in terms of evaluations of the right-hand side. Special challenges arise when these methods are to be implemented. For an efficient implementation, it is crucial to locate and exploit redundancies. Furthermore, the more complex programme flow may lead to computational overhead which, in the worst case, more than compensates the theoretical gain in efficiency. We present a general splitting approach which allows both for IMEX splittings and for local time step adaptation. The main focus is on an efficient implementation of this approach for parallel computation on computer clusters.


2019 ◽  
Vol 627 ◽  
pp. A129
Author(s):  
P. Gläser ◽  
D. Gläser

In this study we present a model to determine surface and sub-surface temperatures of airless bodies in the solar system. To precisely model direct sunlight we incorporated the solar limb darkening effect of the solar disk. Scattered sunlight and thermal re-radiation from nearby planets is also considered in our model. We further consider multiple scattering of reflected sunlight and thermal re-radiation on the modeled object itself. The finite volume method is applied to solve the model for which we present full derivations for the governing equations that control scattering and heat diffusion into the sub-surface. We assessed errors stemming from the chosen discretization of the depth profile, the window size from which scattering is considered, as well as from the chosen integration step-size and the spatial resolution of the Digital Terrain Model (DTM). Exemplarily, we determine surface and sub-surface (2 m depth) temperatures for the lunar polar areas. Topography of the lunar poles is modeled by measurements of the Lunar Orbiter Laser Altimeter (LOLA). We integrated temperatures over a 18.6-year time frame using 180 m pixel−1 LOLA DTMs of the poles, a 60 × 60 km window, and a 12 h integration time-step. The resulting preliminary temperature maps for the lunar poles are presented. Further, we show that our model agrees with temperatures obtained by the Diviner lunar radiometer experiment.


Author(s):  
Bernhard Kähne ◽  
Markus Clemens ◽  
Sebastian Schöps

Purpose A transient magneto-quasistatic vector potential formulation involving nonlinear material is spatially discretized using the finite element method of first and second polynomial order. By applying a generalized Schur complement the resulting system of differential algebraic equations is reformulated into a system of ordinary differential equations (ODE). The ODE system is integrated in time by using explicit time integration schemes. The purpose of this paper is to investigate explicit time integration for eddy current problems with respect to the performance of the first-order explicit Euler scheme and the Runge-Kutta-Chebyshev (RKC) method of higher order. Design/methodology/approach The ODE system is integrated in time using the explicit Euler scheme, which is conditionally stable by a maximum time step size. To overcome this limit, an explicit multistage RKC time integration method of higher order is used to enlarge the maximum stable time step size. Both time integration methods are compared regarding the overall computational effort. Findings The numerical simulations show that a finer spatial discretization forces smaller time step sizes. In comparison to the explicit Euler time integration scheme, the multistage RKC method provides larger stable time step sizes to diminish the overall computation time. Originality/value The explicit time integration of the Schur complement vector potential formulation of eddy current problems is accelerated by a multistage RKC method.


Sign in / Sign up

Export Citation Format

Share Document