scholarly journals Forest fluxes and mortality response to drought: model description (ORCHIDEE-CAN-NHA, r7236) and evaluation at the Caxiuanã drought experiment

2021 ◽  
Author(s):  
Yitong Yao ◽  
Emilie Joetzjer ◽  
Philippe Ciais ◽  
Nicolas Viovy ◽  
Fabio Cresto Aleina ◽  
...  

Abstract. Extreme drought events in Amazon forests are expected to become more frequent and more intense with climate change, threatening ecosystem function and carbon balance. Yet large uncertainties exist on the resilience of this ecosystem to drought. A better quantification of tree hydraulics and mortality processes is needed to anticipate future drought effects on Amazon forests. Most state-of-the-art dynamic global vegetation models are relatively poor in their mechanistic description of these complex processes. Here, we implement a mechanistic plant hydraulic module within the ORCHIDEE-CAN-NHA r7236 land surface model to simulate the percentage loss of conductance (PLC) and changes in water storage among organs via a representation of the water potentials and vertical water flows along the continuum from soil to roots, stems and leaves. The model was evaluated against observed seasonal variability in stand-scale sap flow, soil moisture and productivity under both control and drought setups at the Caxiuanã throughfall exclusion field experiment in eastern Amazonia between 2001 and 2008. A relationship between PLC and tree mortality is built in the model from two empirical parameters, the cumulated drought exposure duration that triggers mortality, and the mortality fraction in each day exceeding the exposure. Our model captures the large biomass drop in the year 2005 observed four years after throughfall reduction, and produces comparable annual tree mortality rates with observation over the study period. Our hydraulic architecture module provides promising avenues for future research in assimilating experimental data to parameterize mortality due to drought-induced xylem dysfunction. We also highlight that species-based (isohydric or anisohydric) hydraulic traits should be further tested to generalize the model performance in predicting the drought risks.

2017 ◽  
Author(s):  
Matthieu Guimberteau ◽  
Dan Zhu ◽  
Fabienne Maignan ◽  
Ye Huang ◽  
Chao Yue ◽  
...  

Abstract. The high-latitude regions of the northern hemisphere are a nexus for the interaction between land surface physical properties and their exchange of carbon and energy with the atmosphere. At these latitudes, two carbon pools of planetary significance – those of the permanently frozen soils (permafrost), and of the great expanse of boreal forest – are vulnerable to destabilization in the face of currently observed climatic warming, the speed and intensity of which are expected to increase with time. Improved projections of future Arctic and boreal ecosystem transformation require improved land surface models that integrate processes specific to these cold biomes. To this end, this study lays out relevant new parameterizations in the ORCHIDEE-MICT land surface model. These describe the interactions between soil carbon, soil temperature and hydrology, and their resulting feedbacks on water and CO2 fluxes, in addition to a recently-developed fire module. Outputs from ORCHIDEE-MICT, when forced by two climate input data sets, are extensively evaluated against: (i) temperature gradients between the atmosphere and deep soils; (ii) the hydrological components comprising the water balance of the largest high-latitude basins, and (iii) CO2 flux and carbon stock observations. The model performance is good with respect to empirical data, despite a simulated excessive plant water stress and a positive land surface temperature bias. In addition, acute model sensitivity to the choice of input forcing data suggests that the calibration of model parameters is strongly forcing-dependent. Overall, we suggest that this new model design is at the forefront of current efforts to reliably estimate future perturbations to the high-latitude terrestrial environment.


2018 ◽  
Vol 11 (1) ◽  
pp. 121-163 ◽  
Author(s):  
Matthieu Guimberteau ◽  
Dan Zhu ◽  
Fabienne Maignan ◽  
Ye Huang ◽  
Chao Yue ◽  
...  

Abstract. The high-latitude regions of the Northern Hemisphere are a nexus for the interaction between land surface physical properties and their exchange of carbon and energy with the atmosphere. At these latitudes, two carbon pools of planetary significance – those of the permanently frozen soils (permafrost), and of the great expanse of boreal forest – are vulnerable to destabilization in the face of currently observed climatic warming, the speed and intensity of which are expected to increase with time. Improved projections of future Arctic and boreal ecosystem transformation require improved land surface models that integrate processes specific to these cold biomes. To this end, this study lays out relevant new parameterizations in the ORCHIDEE-MICT land surface model. These describe the interactions between soil carbon, soil temperature and hydrology, and their resulting feedbacks on water and CO2 fluxes, in addition to a recently developed fire module. Outputs from ORCHIDEE-MICT, when forced by two climate input datasets, are extensively evaluated against (i) temperature gradients between the atmosphere and deep soils, (ii) the hydrological components comprising the water balance of the largest high-latitude basins, and (iii) CO2 flux and carbon stock observations. The model performance is good with respect to empirical data, despite a simulated excessive plant water stress and a positive land surface temperature bias. In addition, acute model sensitivity to the choice of input forcing data suggests that the calibration of model parameters is strongly forcing-dependent. Overall, we suggest that this new model design is at the forefront of current efforts to reliably estimate future perturbations to the high-latitude terrestrial environment.


2018 ◽  
Vol 19 (11) ◽  
pp. 1835-1852 ◽  
Author(s):  
Grey S. Nearing ◽  
Benjamin L. Ruddell ◽  
Martyn P. Clark ◽  
Bart Nijssen ◽  
Christa Peters-Lidard

Abstract We propose a conceptual and theoretical foundation for information-based model benchmarking and process diagnostics that provides diagnostic insight into model performance and model realism. We benchmark against a bounded estimate of the information contained in model inputs to obtain a bounded estimate of information lost due to model error, and we perform process-level diagnostics by taking differences between modeled versus observed transfer entropy networks. We use this methodology to reanalyze the recent Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER) land model intercomparison project that includes the following models: CABLE, CH-TESSEL, COLA-SSiB, ISBA-SURFEX, JULES, Mosaic, Noah, and ORCHIDEE. We report that these models (i) use only roughly half of the information available from meteorological inputs about observed surface energy fluxes, (ii) do not use all information from meteorological inputs about long-term Budyko-type water balances, (iii) do not capture spatial heterogeneities in surface processes, and (iv) all suffer from similar patterns of process-level structural error. Because the PLUMBER intercomparison project did not report model parameter values, it is impossible to know whether process-level error patterns are due to model structural error or parameter error, although our proposed information-theoretic methodology could distinguish between these two issues if parameter values were reported. We conclude that there is room for significant improvement to the current generation of land models and their parameters. We also suggest two simple guidelines to make future community-wide model evaluation and intercomparison experiments more informative.


2015 ◽  
Vol 8 (6) ◽  
pp. 1857-1876 ◽  
Author(s):  
J. J. Guerrette ◽  
D. K. Henze

Abstract. Here we present the online meteorology and chemistry adjoint and tangent linear model, WRFPLUS-Chem (Weather Research and Forecasting plus chemistry), which incorporates modules to treat boundary layer mixing, emission, aging, dry deposition, and advection of black carbon aerosol. We also develop land surface and surface layer adjoints to account for coupling between radiation and vertical mixing. Model performance is verified against finite difference derivative approximations. A second-order checkpointing scheme is created to reduce computational costs and enable simulations longer than 6 h. The adjoint is coupled to WRFDA-Chem, in order to conduct a sensitivity study of anthropogenic and biomass burning sources throughout California during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign. A cost-function weighting scheme was devised to reduce the impact of statistically insignificant residual errors in future inverse modeling studies. Results of the sensitivity study show that, for this domain and time period, anthropogenic emissions are overpredicted, while wildfire emission error signs vary spatially. We consider the diurnal variation in emission sensitivities to determine at what time sources should be scaled up or down. Also, adjoint sensitivities for two choices of land surface model (LSM) indicate that emission inversion results would be sensitive to forward model configuration. The tools described here are the first step in conducting four-dimensional variational data assimilation in a coupled meteorology–chemistry model, which will potentially provide new constraints on aerosol precursor emissions and their distributions. Such analyses will be invaluable to assessments of particulate matter health and climate impacts.


2020 ◽  
Vol 2020 ◽  
pp. 1-30
Author(s):  
Ifeanyi C. Achugbu ◽  
Jimy Dudhia ◽  
Ayorinde A. Olufayo ◽  
Ifeoluwa A. Balogun ◽  
Elijah A. Adefisan ◽  
...  

Simulations with four land surface models (LSMs) (i.e., Noah, Noah-MP, Noah-MP with ground water GW option, and CLM4) using the Weather Research and Forecasting (WRF) model at 12 km horizontal grid resolution were carried out as two sets for 3 months (December–February 2011/2012 and July–September 2012) over West Africa. The objective is to assess the performance of WRF LSMs in simulating meteorological parameters over West Africa. The model precipitation was assessed against TRMM while surface temperature was compared with the ERA-Interim reanalysis dataset. Results show that the LSMs performed differently for different variables in different land-surface conditions. Based on precipitation and temperature, Noah-MP GW is overall the best for all the variables and seasons in combination, while Noah came last. Specifically, Noah-MP GW performed best for JAS temperature and precipitation; CLM4 was the best in simulating DJF precipitation, while Noah was the best in simulating DJF temperature. Noah-MP GW has the wettest Sahel while Noah has the driest one. The strength of the Tropical Easterly Jet (TEJ) is strongest in Noah-MP GW and Noah-MP compared with that in CLM4 and Noah. The core of the African Easterly Jet (AEJ) lies around 12°N in Noah and 15°N for Noah-MP GW. Noah-MP GW and Noah-MP simulations have stronger influx of moisture advection from the southwesterly monsoonal wind than the CLM4 and Noah with Noah showing the least influx. Also, analysis of the evaporative fraction shows sharp gradient for Noah-MP GW and Noah-MP with wetter Sahel further to the north and further to the south for Noah. Noah-MP-GW has the highest amount of soil moisture, while the CLM4 has the least for both the JAS and DJF seasons. The CLM4 has the highest LH for both DJF and JAS seasons but however has the least SH for both DJF and JAS seasons. The principal difference between the LSMs is in the vegetation representation, description, and parameterization of the soil water column; hence, improvement is recommended in this regard.


2017 ◽  
Vol 10 (4) ◽  
pp. 1487-1520 ◽  
Author(s):  
David Walters ◽  
Ian Boutle ◽  
Malcolm Brooks ◽  
Thomas Melvin ◽  
Rachel Stratton ◽  
...  

Abstract. We describe Global Atmosphere 6.0 and Global Land 6.0 (GA6.0/GL6.0): the latest science configurations of the Met Office Unified Model and JULES (Joint UK Land Environment Simulator) land surface model developed for use across all timescales. Global Atmosphere 6.0 includes the ENDGame (Even Newer Dynamics for General atmospheric modelling of the environment) dynamical core, which significantly increases mid-latitude variability improving a known model bias. Alongside developments of the model's physical parametrisations, ENDGame also increases variability in the tropics, which leads to an improved representation of tropical cyclones and other tropical phenomena. Further developments of the atmospheric and land surface parametrisations improve other aspects of model performance, including the forecasting of surface weather phenomena. We also describe GA6.1/GL6.1, which includes a small number of long-standing differences from our main trunk configurations that we continue to require for operational global weather prediction. Since July 2014, GA6.1/GL6.1 has been used by the Met Office for operational global numerical weather prediction, whilst GA6.0/GL6.0 was implemented in its remaining global prediction systems over the following year.


2019 ◽  
Author(s):  
Elias C. Massoud ◽  
Chonggang Xu ◽  
Rosie Fisher ◽  
Ryan Knox ◽  
Anthony Walker ◽  
...  

Abstract. Vegetation plays a key role in regulating global carbon cycles and is a key component of the Earth System Models (ESMs) aimed to project Earth's future climates. In the last decade, the vegetation component within ESMs has witnessed great progresses from simple 'big-leaf' approaches to demographically-structured approaches, which has a better representation of plant size, canopy structure, and disturbances. The demographically-structured vegetation models are typically controlled by a large number of parameters, and sensitivity analysis is generally needed to quantify the impact of each parameter on the model outputs for a better understanding of model behaviors. In this study, we use the Fourier Amplitude Sensitivity Test (FAST) to diagnose the Community Land Model coupled to the Ecosystem Demography Model, or CLM4.5(ED). We investigate the first and second order sensitivities of the model parameters to outputs that represent simulated growth and mortality as well as carbon fluxes and stocks. While the photosynthetic capacity parameter Vc,max25 is found to be important for simulated carbon stocks and fluxes, we also show the importance of carbon storage and allometry parameters, which are shown here to determine vegetation demography and carbon stocks through their impacts on survival and growth strategies. The results of this study highlights the importance of understanding the dynamics of the next generation of demographically-enabled vegetation models within ESMs toward improved model parameterization and model structure for better model fidelity.


Sign in / Sign up

Export Citation Format

Share Document