scholarly journals Describing Earth System Simulations with the Metafor CIM

2012 ◽  
Vol 5 (2) ◽  
pp. 1669-1689 ◽  
Author(s):  
B. N. Lawrence ◽  
V. Balaji ◽  
P. Bentley ◽  
S. Callaghan ◽  
C. DeLuca ◽  
...  

Abstract. The Metafor project has developed a Common Information Model (CIM) using the ISO1900 series formalism to describe the sorts of numerical experiments carried out by the earth system modelling community, the models they use, and the simulations that result. Here we describe the mechanism by which the CIM was developed, and its key properties. We introduce the conceptual and application versions and the controlled vocabularies developed in the context of supporting the fifth Coupled Model Intercomparison Project (CMIP5). We describe how the CIM has been used in experiments to describe model coupling properties and describe the near term expected evolution of the CIM.

2012 ◽  
Vol 5 (6) ◽  
pp. 1493-1500 ◽  
Author(s):  
B. N. Lawrence ◽  
V. Balaji ◽  
P. Bentley ◽  
S. Callaghan ◽  
C. DeLuca ◽  
...  

Abstract. The Metafor project has developed a common information model (CIM) using the ISO19100 series formalism to describe numerical experiments carried out by the Earth system modelling community, the models they use, and the simulations that result. Here we describe the mechanism by which the CIM was developed, and its key properties. We introduce the conceptual and application versions and the controlled vocabularies developed in the context of supporting the fifth Coupled Model Intercomparison Project (CMIP5). We describe how the CIM has been used in experiments to describe model coupling properties and describe the near term expected evolution of the CIM.


2021 ◽  
Author(s):  
Anni Zhao ◽  
Chris Brierley

<p>Experiment outputs are now available from the Coupled Model Intercomparison Project’s 6<sup>th</sup> phase (CMIP6) and the past climate experiments defined in the Model Intercomparison Project’s 4<sup>th</sup> phase (PMIP4). All of this output is freely available from the Earth System Grid Federation (ESGF). Yet there are overheads in analysing this resource that may prove complicated or prohibitive. Here we document the steps taken by ourselves to produce ensemble analyses covering past and future simulations. We outline the strategy used to curate, adjust the monthly calendar aggregation and process the information downloaded from the ESGF. The results of these steps were used to perform analysis for several of the initial publications arising from PMIP4. We provide post-processed fields for each simulation, such as climatologies and common measures of variability. Example scripts used to visualise and analyse these fields is provided for several important case studies.</p>


2020 ◽  
Vol 20 (17) ◽  
pp. 10401-10425
Author(s):  
Chenglai Wu ◽  
Zhaohui Lin ◽  
Xiaohong Liu

Abstract. The dust cycle is an important component of the Earth system and has been implemented in climate models and Earth system models (ESMs). An assessment of the dust cycle in these models is vital to address their strengths and weaknesses in simulating dust aerosol and its interactions with the Earth system and enhance the future model developments. This study presents a comprehensive evaluation of the global dust cycle in 15 models participating in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The various models are compared with each other and with an aerosol reanalysis as well as station observations. The results show that the global dust emission in these models varies by a factor of 4–5 for the same size range. The models generally agree with each other and observations in reproducing the “dust belt”, which extends from North Africa, the Middle East, Central and South Asia to East Asia, although they differ greatly in the spatial extent of this dust belt. The models also differ in other dust source regions such as North America and Australia. We suggest that the coupling of dust emission with dynamic vegetation can enlarge the range of simulated dust emission. For the removal process, all the models estimate that wet deposition is smaller than dry deposition and wet deposition accounts for 12 %–39 % of total deposition. The models also estimate that most (77 %–91 %) dust particles are deposited onto continents and 9 %–23 % of dust particles are deposited into oceans. Compared to the observations, most models reproduce the dust deposition and dust concentrations within a factor of 10 at most stations, but larger biases by more than a factor of 10 are also noted at specific regions and for certain models. These results highlight the need for further improvements of the dust cycle especially on dust emission in climate models.


2020 ◽  
Vol 13 (5) ◽  
pp. 2149-2167 ◽  
Author(s):  
Charlotte Pascoe ◽  
Bryan N. Lawrence ◽  
Eric Guilyardi ◽  
Martin Juckes ◽  
Karl E. Taylor

Abstract. Numerical simulation, and in particular simulation of the earth system, relies on contributions from diverse communities, from those who develop models to those involved in devising, executing, and analysing numerical experiments. Often these people work in different institutions and may be working with significant separation in time (particularly analysts, who may be working on data produced years earlier), and they typically communicate via published information (whether journal papers, technical notes, or websites). The complexity of the models, experiments, and methodologies, along with the diversity (and sometimes inexact nature) of information sources, can easily lead to misinterpretation of what was actually intended or done. In this paper we introduce a taxonomy of terms for more clearly defining numerical experiments, put it in the context of previous work on experimental ontologies, and describe how we have used it to document the experiments of the sixth phase for the Coupled Model Intercomparison Project (CMIP6). We describe how, through iteration with a range of CMIP6 stakeholders, we rationalized multiple sources of information and improved the clarity of experimental definitions. We demonstrate how this process has added value to CMIP6 itself by (a) helping those devising experiments to be clear about their goals and their implementation, (b) making it easier for those executing experiments to know what is intended, (c) exposing interrelationships between experiments, and (d) making it clearer for third parties (data users) to understand the CMIP6 experiments. We conclude with some lessons learnt and how these may be applied to future CMIP phases as well as other modelling campaigns.


2020 ◽  
Author(s):  
Charlotte Pascoe ◽  
David Hassell ◽  
Martina Stockhause ◽  
Mark Greenslade

<div>The Earth System Documentation (ES-DOC) project aims to nurture an ecosystem of tools & services in support of Earth System documentation creation, analysis and dissemination. Such an ecosystem enables the scientific community to better understand and utilise Earth system model data.</div><div>The ES-DOC infrastructure for the Coupled Model Intercomparison Project Phase 6 (CMIP6) modelling groups to describe their climate models and make the documentation available on-line has been available for 18 months, and more recently the automatic generation of documentation of every published simulation has meant that every CMIP6 dataset within the Earth System Grid Federation (ESGF) is now immediately connected to the ES-DOC description of the entire workflow that created it, via a “further info URL”.</div><div>The further info URL is a landing page from which all of the relevant CMIP6 documentation relevant to the data may be accessed, including experimental design, model formulation and ensemble description, as well as providing links to the data citation information.</div><div>These DOI landing pages are part of the Citation Service, provided by DKRZ. Data citation information is also available independently through the ESGF Search portal or in the DataCite search or Google’s dataset search. It provides users of CMIP6 data with the formal citation that should accompany any use of the datasets that comprise their analysis.</div><div>ES-DOC services and the Citation Service form a CMIP6 project  collaboration, and depend upon structured documentation provided by the scientific community. Structured scientific metadata has an important role in science communication, however it’s creation and collation exacts a cost in time, energy and attention.  We discuss progress towards a balance between the ease of information collection and the complexity of our information handling structures.</div><div> </div><div>CMIP6: https://pcmdi.llnl.gov/CMIP6/</div><div>ES-DOC: https://es-doc.org/</div><div>Further Info URL: https://es-doc.org/cmip6-ensembles-further-info-url</div><div> <p>Citation Service: http://cmip6cite.wdc-climate.de</p> </div>


2019 ◽  
Author(s):  
Tomohiro Hajima ◽  
Michio Watanabe ◽  
Akitomo Yamamoto ◽  
Hiroaki Tatebe ◽  
Maki A. Noguchi ◽  
...  

Abstract. This study developed a new Model for Interdisciplinary Research on Climate, Earth System version2 for Long-term simulations (MIROC-ES2L) Earth system model (ESM) using a state-of-the-art climate model as the physical core. This model embeds a terrestrial biogeochemical component with explicit carbon–nitrogen interaction to account for soil nutrient control on plant growth and the land carbon sink. The model’s ocean biogeochemical component is largely updated to simulate biogeochemical cycles of carbon, nitrogen, phosphorus, iron, and oxygen such that oceanic primary productivity can be controlled by multiple nutrient limitations. The ocean nitrogen cycle is coupled with the land component via river discharge processes, and external inputs of iron from pyrogenic and lithogenic sources are considered. Comparison of a historical simulation with observation studies showed the model could reproduce reasonable historical changes in climate, the carbon cycle, and other biogeochemical variables together with reasonable spatial patterns of distribution of the present-day condition. The model demonstrated historical human perturbation of the nitrogen cycle through land use and agriculture, and it simulated the resultant impact on the terrestrial carbon cycle. Sensitivity analyses in preindustrial conditions revealed modeled ocean biogeochemistry could be changed regionally (but substantially) by nutrient inputs from the atmosphere and rivers. Through an idealized experiment of a 1 %CO2 increase scenario, we found the transient climate response (TCR) in the model is 1.5 K, i.e., approximately 70 % that of our previous model. The cumulative airborne fraction (AF) is also reduced by 15 % because of the intensified land carbon sink, resulting in an AF close to the multimodel mean of the Coupled Model Intercomparison Project Phase 5 (CMIP5) ESMs. The transient climate response to cumulative carbon emission (TCRE) is 1.3 K EgC−1, i.e., slightly smaller than the average of the CMIP5 ESMs, suggesting optimistic model performance in future climate projections. This model and the simulation results are contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). The ESM could help further understanding of climate–biogeochemical interaction mechanisms, projections of future environmental changes, and exploration of our future options regarding sustainable development by evolving the processes of climate, biogeochemistry, and human activities in a holistic and interactive manner.


2018 ◽  
Author(s):  
Gerhard Krinner ◽  
Chris Derksen ◽  
Richard Essery ◽  
Mark Flanner ◽  
Stefan Hagemann ◽  
...  

Abstract. This paper describes ESM-SnowMIP, an international coordinated modelling effort to evaluate current snow schemes against local and global observations in a wide variety of settings, including snow schemes that are included in Earth System Models. The project aims at identifying crucial processes and snow characteristics that need to be improved in snow models in the context of local- and global-scale modeling. A further objective of ESM-SnowMIP is to better quantify snow-related feedbacks in the Earth system. ESM-SnowMIP is tightly linked to the Land Surface, Snow and Soil Moisture Model Intercomparison Project, which in turn is part of the 6th phase of the Coupled Model Intercomparison Project (CMIP6).


2007 ◽  
Vol 78 ◽  
pp. 012026 ◽  
Author(s):  
F M Hoffman ◽  
C C Covey ◽  
I Y Fung ◽  
J T Randerson ◽  
P E Thornton ◽  
...  

2021 ◽  
Vol 38 (2) ◽  
pp. 317-328
Author(s):  
Jie Zhang ◽  
Tongwen Wu ◽  
Fang Zhang ◽  
Kalli Furtado ◽  
Xiaoge Xin ◽  
...  

AbstractBCC-ESM1 is the first version of the Beijing Climate Center’s Earth System Model, and is participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6). The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) is the only CMIP6-endorsed MIP in which BCC-ESM1 is involved. All AerChemMIP experiments in priority 1 and seven experiments in priorities 2 and 3 have been conducted. The DECK (Diagnostic, Evaluation and Characterization of Klima) and CMIP historical simulations have also been run as the entry card of CMIP6. The AerChemMIP outputs from BCC-ESM1 have been widely used in recent atmospheric chemistry studies. To facilitate the use of the BCC-ESM1 datasets, this study describes the experiment settings and summarizes the model outputs in detail. Preliminary evaluations of BCC-ESM1 are also presented, revealing that: the climate sensitivities of BCC-ESM1 are well within the likely ranges suggested by IPCC AR5; the spatial structures of annual mean surface air temperature and precipitation can be reasonably captured, despite some common precipitation biases as in CMIP5 and CMIP6 models; a spurious cooling bias from the 1960s to 1990s is evident in BCC-ESM1, as in most other ESMs; and the mean states of surface sulfate concentrations can also be reasonably reproduced, as well as their temporal evolution at regional scales. These datasets have been archived on the Earth System Grid Federation (ESGF) node for atmospheric chemistry studies.


2018 ◽  
Vol 11 (12) ◽  
pp. 5027-5049 ◽  
Author(s):  
Gerhard Krinner ◽  
Chris Derksen ◽  
Richard Essery ◽  
Mark Flanner ◽  
Stefan Hagemann ◽  
...  

Abstract. This paper describes ESM-SnowMIP, an international coordinated modelling effort to evaluate current snow schemes, including snow schemes that are included in Earth system models, in a wide variety of settings against local and global observations. The project aims to identify crucial processes and characteristics that need to be improved in snow models in the context of local- and global-scale modelling. A further objective of ESM-SnowMIP is to better quantify snow-related feedbacks in the Earth system. Although it is not part of the sixth phase of the Coupled Model Intercomparison Project (CMIP6), ESM-SnowMIP is tightly linked to the CMIP6-endorsed Land Surface, Snow and Soil Moisture Model Intercomparison (LS3MIP).


Sign in / Sign up

Export Citation Format

Share Document