scholarly journals On the role of the runoff coefficient in the mapping of rainfall to flood return periods

2009 ◽  
Vol 13 (5) ◽  
pp. 577-593 ◽  
Author(s):  
A. Viglione ◽  
R. Merz ◽  
G. Blöschl

Abstract. While the correspondence of rainfall return period TP and flood return period TQ is at the heart of the design storm procedure, their relationship is still poorly understood. The purpose of this paper is to shed light on the controls on this relationship examining in particular the effect of the variability of event runoff coefficients. A simplified world with block rainfall and linear catchment response is assumed and a derived flood frequency approach, both in analytical and Monte-Carlo modes, is used. The results indicate that TQ can be much higher than TP of the associated storm. The ratio TQ /TP depends on the average wetness of the system. In a dry system, TQ can be of the order of hundreds of times of TP. In contrast, in a wet system, the maximum flood return period is never more than a few times that of the corresponding storm. This is because a wet system cannot be much worse than it normally is. The presence of a threshold effect in runoff generation related to storm volume reduces the maximum ratio of TQ /TP since it decreases the randomness of the runoff coefficients and increases the probability to be in a wet situation. We also examine the relation between the return periods of the input and the output of the design storm procedure when using a pre-selected runoff coefficient and the question which runoff coefficients produce a flood return period equal to the rainfall return period. For the systems analysed here, this runoff coefficient is always larger than the median of the runoff coefficients that cause the maximum annual floods. It depends on the average wetness of the system and on the return period considered, and its variability is particularly high when a threshold effect in runoff generation is present.

2009 ◽  
Vol 6 (1) ◽  
pp. 627-665 ◽  
Author(s):  
A. Viglione ◽  
R. Merz ◽  
G. Blöschl

Abstract. While the correspondence of rainfall return period TP and flood return period TQ is at the heart of the design storm procedure, their relationship is still poorly understood. The purpose of this paper is to shed light on the controls on this relationship examining in particular the effect of the variability of event runoff coefficients. A simplified world with block rainfall and linear catchment response is assumed and a derived flood frequency approach, both in analytical and Monte-Carlo modes, is used. The results indicate that TQ can be much higher than TP of the associated storm. The ratio TQ/TP depends on the average wetness of the system. In a dry system, TQ can be of the order of hundreds of times of TP. In contrast, in a wet system, the maximum flood return period is never more than a few times that of the corresponding storm. This is because a wet system cannot be much worse than it normally is. The presence of a threshold effect in runoff generation related to storm volume reduces the maximum ratio of TQ/TP since it decreases the randomness of the runoff coefficients and increases the probability to be in a wet situation. We also examine the question which runoff coefficients produce a flood return period equal to the rainfall return period if the design storm procedure is applied. For the systems analysed here, this runoff coefficient is always larger than the median of the runoff coefficients that cause the maximum annual floods. It depends on the average wetness of the system and on the return period considered, and its variability is particularly high when a threshold effect in runoff generation is present.


2008 ◽  
Vol 5 (6) ◽  
pp. 3419-3447 ◽  
Author(s):  
A. Viglione ◽  
G. Blöschl

Abstract. While the correspondence of rainfall return period TP and flood return period TQ is at the heart of the design storm procedure, their relationship is still poorly understood. The purpose of this paper is to shed light on the controls on this relationship. To better understand the interplay of the controlling factors we assume a simplified world with block rainfall, constant runoff coefficient and linear catchment response. We use an analytical derived flood frequency approach in which, following design practise, TP is defined as the return period of the intensity-duration-frequency (IDF) curve given storm duration and depth. Results suggest that the main control on the mapping of rainfall to flood return periods is the ratio of storm duration and catchment response time, as would be expected. In the simple world assumed in this work, TQ is always smaller or equal than TP of the associated storm, i.e. TQ/TP≤1. This is because of the difference in the selectiveness of the rectangular filters used to construct the IDF curves and the unit hydrograph (UH) together with the fact that different rectangular filters are used when evaluating the storm return periods. The critical storm duration that maximises TQ/TP is, in descending importance, a function of the catchment response time and the distribution of storm duration, while the maximum value of TQ/TP is mainly a function of the coefficient of variation of storm duration. The study provides the basis for future analyses, where more complex cases will be examined.


2009 ◽  
Vol 13 (2) ◽  
pp. 205-216 ◽  
Author(s):  
A. Viglione ◽  
G. Blöschl

Abstract. While the correspondence of rainfall return period TP and flood return period TQ is at the heart of the design storm procedure, their relationship is still poorly understood. The purpose of this paper is to shed light on the controls on this relationship. To better understand the interplay of the controlling factors we assume a simplified world with block rainfall, constant runoff coefficient and linear catchment response. We use an analytical derived flood frequency approach in which, following design practise, TP is defined as the return period of the intensity-duration-frequency (IDF) curve given storm duration and depth. Results suggest that the main control on the mapping of rainfall to flood return periods is the ratio of storm duration and catchment response time, as would be expected. In the simple world assumed in this work, TQ is always smaller or equal than TP of the associated storm, i.e., TQ/TP≤1. This is because of the difference in the selectiveness of the rectangular filters used to construct the IDF curves and the unit hydrograph (UH) together with the fact that different rectangular filters are used when evaluating the storm return periods. The critical storm duration that maximises TQ/TP is, in descending importance, a function of the catchment response time and the distribution of storm duration, while the maximum value of TQ/TP is mainly a function of the coefficient of variation of storm duration. The study provides the basis for future analyses, where more complex cases will be examined.


2016 ◽  
Author(s):  
Reza Ghazavi ◽  
Ali Moafi Rabori ◽  
Mohsen Ahadnejad Reveshty

Abstract. Estimate design storm based on rainfall intensity–duration–frequency (IDF) curves is an important parameter for hydrologic planning of urban areas. The main aim of this study was to estimate rainfall intensities of Zanjan city watershed based on overall relationship of rainfall IDF curves and appropriate model of hourly rainfall estimation (Sherman method, Ghahreman and Abkhezr method). Hydrologic and hydraulic impacts of rainfall IDF curves change in flood properties was evaluated via Stormwater Management Model (SWMM). The accuracy of model simulations was confirmed based on the results of calibration. Design hyetographs in different return periods show that estimated rainfall depth via Sherman method are greater than other method except for 2-year return period. According to Ghahreman and Abkhezr method, decrease of runoff peak was 30, 39, 41 and 42 percent for 5-10-20 and 50-year return periods respectively, while runoff peak for 2-year return period was increased by 20 percent.


2021 ◽  
Author(s):  
Shuilong Yuan ◽  
Chen Li ◽  
Zhanbin Li ◽  
Zeyu Zhang

<p>As important soil and water conservation engineering measures, there are more than 100,000 check dams constructed on the Loess Plateau; these dams play a vital role in reducing floods and sediment in watersheds. However, the effects of check dams on hydrologic process are still unclear, particularly when they are deployed as a system for watershed soil and water management. This study examined the watershed hydrologic process modulated by the check dam system in a typical Loess Plateau catchment. By simulating scenarios with various numbers of check dams using a distributed physical-based hydrological model, the effects of the number of check dams on runoff generation and concentration were analyzed for the study catchment. The results showed that the presence of check dams reduced the peak discharge and the flood volume and extended the flood duration; the reduction effect on peak discharge was most significant among the three factors. The system of check dams substantially decreased the runoff coefficient, and the runoff coefficient reduction rate was greater for rainstorms with shorter return periods than for rainstorms with longer return periods. The check dams increased the capacity of the catchment regulating and storing floods and extended the average runoff concentration time in the catchment that flattened the instantaneous unit hydrograph. This study reveals the influencing mechanism of check dams on the hydrological process of a watershed under heavy rainstorm conditions and provides a theoretical basis for evaluating the effects of numerous check dams on regional hydrology and water resources on the Loess Plateau.</p>


2021 ◽  
Author(s):  
Zhengzheng Zhou ◽  
James A. Smith ◽  
Mary Lynn Baeck ◽  
Daniel B. Wright ◽  
Brianne K. Smith ◽  
...  

Abstract. The role of rainfall space-time structure, as well as its complex interactions with land surface properties, in flood response remains an open research issue. This study contributes to this understanding, specifically in small (< 15 km2) urban watersheds. Using a flood frequency analysis framework that combines stochastic storm transposition-based rainfall scenarios with the physically-based distributed GSSHA model, we examine the role of rainfall spatial and temporal variability in flood frequency across drainage scales in the highly-urbanized Dead Run watershed (14.3 km2) outside of Baltimore, Maryland, USA. The results show the complexities of flood response within several subwatersheds for both short (< 50 years) and long (> 100 years) rainfall return periods. The impact of impervious area on flood response decreases with increasing rainfall return period. For extreme storms, the maximum discharge is closely linked to the spatial structure of rainfall, especially storm core spatial coverage. The spatial heterogeneity of rainfall increases flood peak magnitudes by 50 % on average at the watershed outlet and its subwatersheds for both small and large return periods. The results imply that commonly-made assumption of spatially uniform rainfall in urban flood frequency modeling is problematic even for relatively small basin scales.


2010 ◽  
Vol 7 (3) ◽  
pp. 3613-3648 ◽  
Author(s):  
S. Vandenberghe ◽  
N. E. C. Verhoest ◽  
E. Buyse ◽  
B. De Baets

Abstract. The use of design storms can be very useful in many hydrological and hydraulic practices. In this study, the concept of a copula-based secondary return period in combination with the concept of mass curves is used to generate design storms. The analysis is based on storms selected from the 105 year rainfall time series with a 10 min resolution, measured at Uccle, Belgium. In first instance, bivariate copulas and secondary return periods are explained, together with a focus on which couple of storm variables is of highest interest for the analysis and a discussion of how the results might be affected by the goodness-of-fit of the copula. Subsequently, the fitted copula is used to sample storms with a predefined secondary return period for which characteristic variables such as storm duration and total storm depth can be derived. In order to construct design storms with a realistic storm structure, mass curves of 1st, 2nd, 3rd and 4th quartile storms are developed. An analysis shows that the assumption of independence between the secondary return period and the internal storm structure could be made. Based on the mass curves, a technique is developed to randomly generate an intrastorm structure. The coupling of both techniques eventually results in a methodology for stochastic design storm generation. Finally, its practical usefulness for design studies is illustrated based on the generation of design storm ensembles and rainfall-runoff modelling.


2021 ◽  
Author(s):  
Enrique Soriano Martín ◽  
Antonio Jiménez ◽  
Luis Mediero

&lt;p&gt;Flood peak quantiles for return periods up to 10 000 years are required for dam design and safety assessment, though flood series usually have a record length of around 20-40 years that leads to a high uncertainty. The utility of historical data of flooding is generally recognised for estimating the magnitude of extreme events with return periods in excess of 100 years. Therefore, historical information can be incorporated in flood frequency analyses to reduce uncertainties in high return period flood quantile estimates that are used in hydrological dam safety analyses.&lt;/p&gt;&lt;p&gt;This study assesses a set of existing techniques to incorporate historical information of flooding in extreme frequency analyses, focusing on their reliability and uncertainty reduction for high return periods that are used for dam safety analysis. Monte Carlo simulations are used to assess both the reliability and uncertainty in high return period quantile estimates. Varying lengths in the historical (Nh = 100 and 200 years) and systematic (Ns = 20, 40 and 60 years) periods are considered. In addition, a varying number of known flood magnitudes that exceed a given perception threshold in the historical period are also considered (k = 1-2). The values of Nh, Ns and k used in the study are the most usual in practice.&lt;/p&gt;&lt;p&gt;The reliability and uncertainty reduction in flood quantile estimates for each technique depend on the statistical properties of flood series. Therefore, a set of feasible combinations of L-coefficient of variation (L-CV) and skewness (L-CS) values should be considered. The analysis aims to understand how each technique behaves in terms of flood quantile reliability and uncertainty reduction depending on the L-moment statistics of flood series. In this study, L-CV and L-CS regional values in the 29 homogeneous regions identified in Spain for developing the national map of flood quantiles by the Centre for Hydrographic Studies of CEDEX are considered.&lt;/p&gt;&lt;p&gt;The results show that the maximum likelihood estimator (MLE) and weighted moments (WM) techniques show the best results in the regions with small L-CS values. However, the biased partial probability weighted moments (BPPWM) technique shows the best results in the regions with high L-CS values. While the expected moments algorithm (EMA) tends to underestimate flood quantiles for high return periods, the unbiased partial probability weighted moments (UPPWM) technique tends to overestimate them. In addition, including historical information of flooding in flood frequency analyses improves flood quantile estimates in most cases regardless the technique that is used. Uncertainty reduction in high return period flood quantile estimates are higher for short systematic time series, regions with high L-CS values and long historical periods.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Acknowledgments:&lt;/strong&gt; This research has been supported by the project SAFERDAMS (PID2019-107027RB-I00) funded by the Spanish Ministry of Science and Innovation.&lt;/p&gt;


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 635 ◽  
Author(s):  
Nikoletta Stamatatou ◽  
Lampros Vasiliades ◽  
Athanasios Loukas

Flood frequency estimation for the design of hydraulic structures is usually performed as a univariate analysis of flood event magnitudes. However, recent studies show that for accurate return period estimation of the flood events, the dependence and the correlation pattern among flood attribute characteristics, such as peak discharge, volume and duration should be taken into account in a multivariate framework. The primary goal of this study is to compare univariate and joint bivariate return periods of floods that all rely on different probability concepts in Yermasoyia watershed, Cyprus. Pairs of peak discharge with corresponding flood volumes are estimated and compared using annual maximum series (AMS) and peaks over threshold (POT) approaches. The Lyne-Hollick recursive digital filter is applied to separate baseflow from quick flow and to subsequently estimate flood volumes from the quick flow timeseries. Marginal distributions of flood peaks and volumes are examined and used for the estimation of typical design periods. The dependence between peak discharges and volumes is then assessed by an exploratory data analysis using K-plots and Chi-plots, and the consistency of their relationship is quantified by Kendall’s correlation coefficient. Copulas from Archimedean, Elliptical and Extreme Value families are fitted using a pseudo-likelihood estimation method, verified using both graphical approaches and a goodness-of-fit test based on the Cramér-von Mises statistic and evaluated according to the corrected Akaike Information Criterion. The selected copula functions and the corresponding joint return periods are calculated and the results are compared with the marginal univariate estimations of each variable. Results indicate the importance of the bivariate analysis in the estimation of design return period of the hydraulic structures.


2018 ◽  
Author(s):  
Matthew D. K. Priestley ◽  
Helen F. Dacre ◽  
Len C. Shaffrey ◽  
Kevin I. Hodges ◽  
Joaquim G. Pinto

Abstract. Extratropical cyclones are the most damaging natural hazard to affect western Europe. Serial clustering occurs when many intense cyclones affect one area in a period of time which can potentially lead to very large seasonal losses. Previous studies have shown that intense cyclones may be more likely to cluster than less intense cyclones. We revisit this topic using a high resolution climate model with the aim to determine how important clustering is for windstorm related losses. The role of windstorm clustering is investigated using a quantifiable loss-based metric (storm severity index (SSI)) based on near-surface meteorological variables (10-metre wind speed) that is used to convert a wind footprint into losses for individual windstorms or seasons. 918 years of high resolution coupled climate model data from the High-Resolution Global Environment Model (HiGEM) are compared to ERA-Interim re-analysis. HiGEM is able to successfully reproduce the wintertime North Atlantic/European circulation, and represent the large-scale circulation associated with the serial clustering of European windstorms. We use two measures to identify any changes in the contribution of clustering to the overall seasonal losses for increasing return periods. Above a return period of 3 years, the accumulated seasonal loss from HiGEM is up to 20 % larger than the accumulated seasonal loss from a set of random realisations of the HiGEM data. Seasonsal losses are increased by 10–20 % relative to randomised seasonal losses at a return period of 200 years. The contribution of the single largest event in a season to the accumulated seasonal loss does not change with return period, generally ranging between ~ 0.25–0.5. Given the realistic dynamical representation of cyclone clustering in HiGEM, and comparable statistics to ERA-Interim, we conclude that our estimation of clustering and its dependence on the return period will be useful for informing the development of risk models for European windstorms, particularly for longer return periods.


Sign in / Sign up

Export Citation Format

Share Document