scholarly journals Evaluation of rainfall retrievals from SEVIRI reflectances over West Africa using TRMM-PR and CMORPH

2011 ◽  
Vol 15 (2) ◽  
pp. 437-451 ◽  
Author(s):  
E. L. A. Wolters ◽  
B. J. J. M. van den Hurk ◽  
R. A. Roebeling

Abstract. This paper describes the evaluation of the KNMI Cloud Physical Properties – Precipitation Properties (CPP-PP) algorithm over West Africa. The algorithm combines condensed water path (CWP), cloud phase (CPH), cloud particle effective radius (re), and cloud-top temperature (CTT) retrievals from visible, near-infrared and thermal infrared observations of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellites to estimate rain occurrence frequency and rain rate. For the 2005 and 2006 monsoon seasons, it is investigated whether the CPP-PP algorithm is capable of retrieving rain occurrence frequency and rain rate over West Africa with sufficient accuracy, using Tropical Monsoon Measurement Mission Precipitation Radar (TRMM-PR) as reference. As a second goal, it is assessed whether SEVIRI is capable of monitoring the seasonal and daytime evolution of rainfall during the West African monsoon (WAM), using Climate Prediction Center Morphing Technique (CMORPH) rainfall observations. The SEVIRI-detected rainfall area agrees well with TRMM-PR, with the areal extent of rainfall by SEVIRI being ~10% larger than from TRMM-PR. The mean retrieved rain rate from CPP-PP is about 8% higher than from TRMM-PR. Examination of the TRMM-PR and CPP-PP cumulative frequency distributions revealed that differences between CPP-PP and TRMM-PR are generally within +/−10%. Relative to the AMMA rain gauge observations, CPP-PP shows very good agreement up to 5 mm h−1. However, at higher rain rates (5–16 mm h−1) CPP-PP overestimates compared to the rain gauges. With respect to the second goal of this paper, it was shown that both the accumulated precipitation and the seasonal progression of rainfall throughout the WAM is in good agreement with CMORPH, although CPP-PP retrieves higher amounts in the coastal region of West Africa. Using latitudinal Hovmüller diagrams, a fair correspondence between CPP-PP and CMORPH was found, which is reflected by high correlation coefficients (~0.7) for both rain rate and rain occurrence frequency. The daytime cycle of rainfall from CPP-PP shows distinctly different patterns for three different regions in West Africa throughout the WAM, with a decrease in dynamical range of rainfall near the Inter Tropical Convergence Zone (ITCZ). The dynamical range as retrieved from CPP-PP is larger than that from CMORPH. It is suggested that this results from both the better spatio-temporal resolution of SEVIRI, as well as from thermal infrared radiances being partly used by CMORPH, which likely smoothes the daytime precipitation signal, especially in case of cold anvils from convective systems. The promising results show that the CPP-PP algorithm, taking advantage of the high spatio-temporal resolution of SEVIRI, is of added value for monitoring daytime precipitation patterns in tropical areas.

2018 ◽  
Vol 10 (12) ◽  
pp. 1950 ◽  
Author(s):  
Luca Cenci ◽  
Luca Pulvirenti ◽  
Giorgio Boni ◽  
Nazzareno Pierdicca

The next generation of synthetic aperture radar (SAR) systems could foresee satellite missions based on a geosynchronous orbit (GEO SAR). These systems are able to provide radar images with an unprecedented combination of spatial (≤1 km) and temporal (≤12 h) resolutions. This paper investigates the GEO SAR potentialities for soil moisture (SM) mapping finalized to hydrological applications, and defines the best compromise, in terms of image spatio-temporal resolution, for SM monitoring. A synthetic soil moisture–data assimilation (SM-DA) experiment was thus set up to evaluate the impact of the hydrological assimilation of different GEO SAR-like SM products, characterized by diverse spatio-temporal resolutions. The experiment was also designed to understand if GEO SAR-like SM maps could provide an added value with respect to SM products retrieved from SAR images acquired from satellites flying on a quasi-polar orbit, like Sentinel-1 (POLAR SAR). Findings showed that GEO SAR systems provide a valuable contribution for hydrological applications, especially if the possibility to generate many sub-daily observations is sacrificed in favor of higher spatial resolution. In the experiment, it was found that the assimilation of two GEO SAR-like observations a day, with a spatial resolution of 100 m, maximized the performances of the hydrological predictions, for both streamflow and SM state forecasts. Such improvements of the model performances were found to be 45% higher than the ones obtained by assimilating POLAR SAR-like SM maps.


2010 ◽  
Vol 7 (4) ◽  
pp. 6351-6380 ◽  
Author(s):  
E. L. A. Wolters ◽  
B. J. J. M. van den Hurk ◽  
R. A. Roebeling

Abstract. This paper describes the application of the KNMI cloud physical properties – precipitation properties (CPP-PP) algorithm over West Africa. The algorithm combines condensed water path (CWP), cloud phase (CPH), cloud particle effective radius (re), and cloud-top temperature (CTT) information, retrieved from visible, near-infrared and infrared observations of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat-9 to estimate precipitation occurrence and intensity. It is investigated whether the CPP-PP algorithm is capable of retrieving rain occurrence and intensity over West Africa with a sufficient accuracy, using tropical monsoon measurement mission precipitation radar (TRMM-PR) and a small number of rain gauge observations as reference. As a second goal, it is assessed whether SEVIRI is capable of monitoring both the seasonal and synoptical evolution of the West African monsoon (WAM). It is shown that the SEVIRI-detected rainfall area agrees well with TRMM-PR, having a correlation coefficient of 0.86, with the areal extent of rainfall by SEVIRI being ~10% larger than TRMM-PR. The mean retrieved rain rate from CPP-PP is about 8% higher than from TRMM-PR. The frequency distributions of rain rate reveal that the median rain rates of CPP-PP and TRMM-PR are similar. However, rain rates >7 mm h−1 are retrieved more frequently by SEVIRI than by TRMM-PR, which is partly explained by known biases in TRMM-PR. Finally, it is illustrated that both the seasonal and synoptical time scale of the WAM can be well detected from SEVIRI daytime observations. It was found that the daytime westward MCS travel speed fluctuates between 50 and 60 km h−1. Furthermore, the ratio of MCS precipitation to the total precipitation was estimated to be about 27%. Our results indicate that rainfall retrievals from SEVIRI can be used to monitor the West African monsoon.


2016 ◽  
Author(s):  
Emmanuel Dekemper ◽  
Jurgen Vanhamel ◽  
Bert Van Opstal ◽  
Didier Fussen

Abstract. The abundance of NO2 in the boundary layer relates to air quality and pollution sources monitoring. Observing the spatio-temporal distribution of NO2 above well-delimited (flue gas stacks, volcanoes, ships) or more extended sources (cities) allows for several applications: monitoring emission fluxes or studying the plume dynamic chemistry and its transport. So far, most attempts to map the NO2 field from the ground have been made with visible-light scanning spectrometers. Benefiting from a high retrieval accuracy, they only achieve a relatively low temporal resolution that hampers the detection of dynamic features. We present a new type of passive remote sensing instrument aiming at the measurement of the 2-D distributions of NO2 slant column densities (SCD) with a high spatio-temporal resolution. The measurement principle has strong similarities with the popular filter-based SO2 camera as it relies on spectral images taken at wavelengths where the molecule absorption cross-section is different. Contrary to the SO2 camera, the spectral selection is performed by an acousto-optical tunable filter (AOTF) capable of resolving the target molecule's spectral features. The NO2 camera capabilities are demonstrated by imaging the NO2 abundance in the plume of a coal-fired power plant. During this experiment, the 2-D distribution of the NO2 SCD was retrieved with a temporal resolution of 3 minutes and a spatial sampling of 50 cm (over a 250 x 250 m2 area). The detection limit was close to 5 x 1016 molecules cm−2, with a maximum detected SCD of 4 x 1017 molecules cm−2. Illustrating the added-value of the NO2 camera measurements, the data reveal the dynamics of the NO to NO2 conversion in the early plume with an unprecedent resolution: from its release in the air, and for 100 m upwards, the observed NO2 plume concentration increased at a rate of 0.75–1.25 g s−1. In joint campaigns with SO2 cameras, the NO2 camera could also help in removing the bias introduced by the NO2 interference in the SO2 measurements.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xichuan Liu ◽  
Taichang Gao ◽  
Yuntao Hu ◽  
Xiaojian Shu

In order to improve the measurement of precipitation microphysical characteristics sensor (PMCS), the sampling process of raindrops by PMCS based on a particle-by-particle Monte-Carlo model was simulated to discuss the effect of different bin sizes on DSD measurement, and the optimum sampling bin sizes for PMCS were proposed based on the simulation results. The simulation results of five sampling schemes of bin sizes in four rain-rate categories show that the raw capture DSD has a significant fluctuation variation influenced by the capture probability, whereas the appropriate sampling bin size and width can reduce the impact of variation of raindrop number on DSD shape. A field measurement of a PMCS, an OTT PARSIVEL disdrometer, and a tipping bucket rain Gauge shows that the rain-rate and rainfall accumulations have good consistencies between PMCS, OTT, and Gauge; the DSD obtained by PMCS and OTT has a good agreement; the probability of N0, μ, and Λ shows that there is a good agreement between the Gamma parameters of PMCS and OTT; the fitted μ-Λ and Z-R relationship measured by PMCS is close to that measured by OTT, which validates the performance of PMCS on rain-rate, rainfall accumulation, and DSD related parameters.


Sign in / Sign up

Export Citation Format

Share Document