scholarly journals Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping

2012 ◽  
Vol 16 (9) ◽  
pp. 3309-3314 ◽  
Author(s):  
B. Thrasher ◽  
E. P. Maurer ◽  
C. McKellar ◽  
P. B. Duffy

Abstract. When applying a quantile mapping-based bias correction to daily temperature extremes simulated by a global climate model (GCM), the transformed values of maximum and minimum temperatures are changed, and the diurnal temperature range (DTR) can become physically unrealistic. While causes are not thoroughly explored, there is a strong relationship between GCM biases in snow albedo feedback during snowmelt and bias correction resulting in unrealistic DTR values. We propose a technique to bias correct DTR, based on comparing observations and GCM historic simulations, and combine that with either bias correcting daily maximum temperatures and calculating daily minimum temperatures or vice versa. By basing the bias correction on a base period of 1961–1980 and validating it during a test period of 1981–1999, we show that bias correcting DTR and maximum daily temperature can produce more accurate estimations of daily temperature extremes while avoiding the pathological cases of unrealistic DTR values.

2012 ◽  
Vol 9 (4) ◽  
pp. 5515-5529 ◽  
Author(s):  
B. L. Thrasher ◽  
E. P. Maurer ◽  
C. McKellar ◽  
P. B. Duffy

Abstract. When applying a quantile-mapping based bias correction to daily temperature extremes simulated by a global climate model (GCM), the transformed values of maximum and minimum temperatures are changed, and the diurnal temperature range (DTR) can become physically unrealistic. While causes are not thoroughly explored, there is a strong relationship between GCM biases in snow albedo feedback during snowmelt and bias correction resulting in unrealistic DTR values. We propose a technique to bias correct DTR, based on comparing observations and GCM historic simulations, and combine that with either bias correcting daily maximum temperatures and calculating daily minimum temperatures or vice versa. By basing the bias correction on a base period of 1961–1980 and validating it during a test period of 1981–1999, we show that bias correcting DTR and maximum daily temperature can produce more accurate estimations of daily temperature extremes while avoiding the pathological cases of unrealistic DTR values.


2015 ◽  
Vol 28 (17) ◽  
pp. 6938-6959 ◽  
Author(s):  
Alex J. Cannon ◽  
Stephen R. Sobie ◽  
Trevor Q. Murdock

Abstract Quantile mapping bias correction algorithms are commonly used to correct systematic distributional biases in precipitation outputs from climate models. Although they are effective at removing historical biases relative to observations, it has been found that quantile mapping can artificially corrupt future model-projected trends. Previous studies on the modification of precipitation trends by quantile mapping have focused on mean quantities, with less attention paid to extremes. This article investigates the extent to which quantile mapping algorithms modify global climate model (GCM) trends in mean precipitation and precipitation extremes indices. First, a bias correction algorithm, quantile delta mapping (QDM), that explicitly preserves relative changes in precipitation quantiles is presented. QDM is compared on synthetic data with detrended quantile mapping (DQM), which is designed to preserve trends in the mean, and with standard quantile mapping (QM). Next, methods are applied to phase 5 of the Coupled Model Intercomparison Project (CMIP5) daily precipitation projections over Canada. Performance is assessed based on precipitation extremes indices and results from a generalized extreme value analysis applied to annual precipitation maxima. QM can inflate the magnitude of relative trends in precipitation extremes with respect to the raw GCM, often substantially, as compared to DQM and especially QDM. The degree of corruption in the GCM trends by QM is particularly large for changes in long period return values. By the 2080s, relative changes in excess of +500% with respect to historical conditions are noted at some locations for 20-yr return values, with maximum changes by DQM and QDM nearing +240% and +140%, respectively, whereas raw GCM changes are never projected to exceed +120%.


2019 ◽  
Author(s):  
Nicholas J. Potter ◽  
Francis H. S. Chiew ◽  
Stephen P. Charles ◽  
Guobin Fu ◽  
Hongxing Zheng ◽  
...  

Abstract. Dynamical downscaling of future projections of global climate model outputs can potentially provide useful information about plausible and possible changes to water resource availability, for which there is increasing demand for regional water resource planning processes. By explicitly modelling climate processes within and across global climate model gridcells for a region, dynamical downscaling can provide higher resolution hydroclimate projections, as well as independent (from historical timeseries) and physically plausible future rainfall timeseries for hydrological modelling applications. However, since rainfall is not typically constrained to observations by these methods, there is often a need for bias correction before use in hydrological modelling. Many bias correction methods (such as scaling, empirical and distributional mapping) have been proposed in the literature, but methods that treat daily amounts only (and not sequencing) can result in residual biases in certain rainfall characteristics, which flow through to biases and problems with subsequently modelled runoff. We apply quantile-quantile mapping to rainfall dynamically downscaled by NARCliM in the State of Victoria, Australia and examine the effect of this on: (i) biases both before and after bias correction in different rainfall metrics; (ii) change signals in metrics in comparison to the bias; and (iii) the effect of bias correction on wet-wet and dry-dry transition probabilities. After bias correction, persistence of wet states is under-correlated (i.e. more random than observations), and this results in a significant bias (underestimation) of runoff using hydrological models calibrated on historical data. A novel representation of quantile-quantile mapping is developed based on lag-one transition probabilities of dry and wet states, and we use this to explain residual biases in transition probabilities. This demonstrates that any quantile mapping bias correction methods are unable to correct the underestimation of autocorrelation of rainfall sequencing, which suggests that new methods are needed to properly bias correct dynamical downscaling rainfall outputs.


2020 ◽  
Vol 24 (6) ◽  
pp. 2963-2979 ◽  
Author(s):  
Nicholas J. Potter ◽  
Francis H. S. Chiew ◽  
Stephen P. Charles ◽  
Guobin Fu ◽  
Hongxing Zheng ◽  
...  

Abstract. Dynamical downscaling of future projections of global climate model outputs can provide useful information about plausible and possible changes to water resource availability, for which there is increasing demand in regional water resource planning processes. By explicitly modelling climate processes within and across global climate model grid cells for a region, dynamical downscaling can provide higher-resolution hydroclimate projections and independent (from historical time series), physically plausible future rainfall time series for hydrological modelling applications. However, since rainfall is not typically constrained to observations by these methods, there is often a need for bias correction before use in hydrological modelling. Many bias-correction methods (such as scaling, empirical and distributional mapping) have been proposed in the literature, but methods that treat daily amounts only (and not sequencing) can result in residual biases in certain rainfall characteristics, which flow through to biases and problems with subsequently modelled runoff. We apply quantile–quantile mapping to rainfall dynamically downscaled by the NSW and ACT Regional Climate Modelling (NARCliM) Project in the state of Victoria, Australia, and examine the effect of this on (i) biases both before and after bias correction in different rainfall metrics, (ii) change signals in metrics in comparison to the bias and (iii) the effect of bias correction on wet–wet and dry–dry transition probabilities. After bias correction, persistence of wet states is under-correlated (i.e. more random than observations), and this results in a significant bias (underestimation) of runoff using hydrological models calibrated on historical data. A novel representation of quantile–quantile mapping is developed based on lag-one transition probabilities of dry and wet states, and we use this to explain residual biases in transition probabilities. Representing quantile–quantile mapping in this way demonstrates that any quantile mapping bias-correction method is unable to correct the underestimation of autocorrelation of rainfall sequencing, which suggests that new methods are needed to properly bias-correct dynamical downscaling rainfall outputs.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Mohammad Badrul Masud ◽  
Peeyush Soni ◽  
Sangam Shrestha ◽  
Nitin K. Tripathi

This study analyzes 24 climate extreme indices over North Thailand using observed data for daily maximum and minimum temperatures and total daily rainfall for the 1960–2010 period, and HadCM3 Global Climate Model (GCM) and PRECIS Regional Climate Model simulated data for the 1960–2100 period. A statistical downscaling tool is employed to downscale GCM outputs. Variations in and trends of historical and future climates are identified using the nonparametric Mann-Kendall trend test and Sen’s slope. Temperature extreme indices showed a significant rising trend during the observed period and are expected to increase significantly with an increase in summer days and tropical nights in the future. A notable decline in the number of cool days and nights is also expected in the study area while the number of warm days and nights is expected to increase. There was an insignificant decrease in total annual rainfall, number of days with rainfall more than 10 and 20 mm. However, the annual rainfall is projected to increase by 9.65% in the future 2011–2099 period compared to the observed 1960–2010 period.


2021 ◽  
Vol 12 (4) ◽  
pp. 1253-1273
Author(s):  
Yoann Robin ◽  
Mathieu Vrac

Abstract. Bias correction and statistical downscaling are now regularly applied to climate simulations to make then more usable for impact models and studies. Over the last few years, various methods were developed to account for multivariate – inter-site or inter-variable – properties in addition to more usual univariate ones. Among such methods, temporal properties are either neglected or specifically accounted for, i.e. differently from the other properties. In this study, we propose a new multivariate approach called “time-shifted multivariate bias correction” (TSMBC), which aims to correct the temporal dependency in addition to the other marginal and multivariate aspects. TSMBC relies on considering the initial variables at various times (i.e. lags) as additional variables to be corrected. Hence, temporal dependencies (e.g. auto-correlations) to be corrected are viewed as inter-variable dependencies to be adjusted and an existing multivariate bias correction (MBC) method can then be used to answer this need. This approach is first applied and evaluated on synthetic data from a vector auto-regressive (VAR) process. In a second evaluation, we work in a “perfect model” context where a regional climate model (RCM) plays the role of the (pseudo-)observations, and where its forcing global climate model (GCM) is the model to be downscaled or bias corrected. For both evaluations, the results show a large reduction of the biases in the temporal properties, while inter-variable and spatial dependence structures are still correctly adjusted. However, increasing the number of lags too much does not necessarily improve the temporal properties, and an overly strong increase in the number of dimensions of the dataset to be corrected can even imply some potential instability in the adjusted and/or downscaled results, calling for a reasoned use of this approach for large datasets.


2015 ◽  
Vol 16 (6) ◽  
pp. 2421-2442 ◽  
Author(s):  
David W. Pierce ◽  
Daniel R. Cayan ◽  
Edwin P. Maurer ◽  
John T. Abatzoglou ◽  
Katherine C. Hegewisch

Abstract Global climate model (GCM) output typically needs to be bias corrected before it can be used for climate change impact studies. Three existing bias correction methods, and a new one developed here, are applied to daily maximum temperature and precipitation from 21 GCMs to investigate how different methods alter the climate change signal of the GCM. The quantile mapping (QM) and cumulative distribution function transform (CDF-t) bias correction methods can significantly alter the GCM’s mean climate change signal, with differences of up to 2°C and 30% points for monthly mean temperature and precipitation, respectively. Equidistant quantile matching (EDCDFm) bias correction preserves GCM changes in mean daily maximum temperature but not precipitation. An extension to EDCDFm termed PresRat is introduced, which generally preserves the GCM changes in mean precipitation. Another problem is that GCMs can have difficulty simulating variance as a function of frequency. To address this, a frequency-dependent bias correction method is introduced that is twice as effective as standard bias correction in reducing errors in the models’ simulation of variance as a function of frequency, and it does so without making any locations worse, unlike standard bias correction. Last, a preconditioning technique is introduced that improves the simulation of the annual cycle while still allowing the bias correction to take account of an entire season’s values at once.


2016 ◽  
Vol 20 (5) ◽  
pp. 1785-1808 ◽  
Author(s):  
Lamprini V. Papadimitriou ◽  
Aristeidis G. Koutroulis ◽  
Manolis G. Grillakis ◽  
Ioannis K. Tsanis

Abstract. Climate models project a much more substantial warming than the 2 °C target under the more probable emission scenarios, making higher-end scenarios increasingly plausible. Freshwater availability under such conditions is a key issue of concern. In this study, an ensemble of Euro-CORDEX projections under RCP8.5 is used to assess the mean and low hydrological states under +4 °C of global warming for the European region. Five major European catchments were analysed in terms of future drought climatology and the impact of +2 °C versus +4 °C global warming was investigated. The effect of bias correction of the climate model outputs and the observations used for this adjustment was also quantified. Projections indicate an intensification of the water cycle at higher levels of warming. Even for areas where the average state may not considerably be affected, low flows are expected to reduce, leading to changes in the number of dry days and thus drought climatology. The identified increasing or decreasing runoff trends are substantially intensified when moving from the +2 to the +4° of global warming. Bias correction resulted in an improved representation of the historical hydrology. It is also found that the selection of the observational data set for the application of the bias correction has an impact on the projected signal that could be of the same order of magnitude to the selection of the Global Climate Model (GCM).


Sign in / Sign up

Export Citation Format

Share Document