scholarly journals Precipitation bias correction of very high resolution regional climate models

2013 ◽  
Vol 17 (11) ◽  
pp. 4379-4388 ◽  
Author(s):  
D. Argüeso ◽  
J. P. Evans ◽  
L. Fita

Abstract. Regional climate models are prone to biases in precipitation that are problematic for use in impact models such as hydrology models. A large number of methods have already been proposed aimed at correcting various moments of the rainfall distribution. They all require that the model produce the same or a higher number of rain days than the observational data sets, which are usually gridded data sets. Models have traditionally met this condition because their spatial resolution was coarser than the observational grids. But recent climate simulations use higher resolution and the models are likely to systematically produce fewer rain days than the gridded observations. In this study, model outputs from a simulation at 2 km resolution are compared with gridded and in situ observational data sets to determine whether the new scenario calls for revised methodologies. The gridded observations are found to be inadequate to correct the high-resolution model at daily timescales, because they are subjected to too frequent low intensity precipitation due to spatial averaging. A histogram equalisation bias correction method was adapted to the use of station, alleviating the problems associated with relative low-resolution observational grids. The wet-day frequency condition might not be satisfied for extremely dry biases, but the proposed approach substantially increases the applicability of bias correction to high-resolution models. The method is efficient at bias correcting both seasonal and daily characteristic of precipitation, providing more accurate information that is crucial for impact assessment studies.

2013 ◽  
Vol 10 (6) ◽  
pp. 8145-8165 ◽  
Author(s):  
D. Argüeso ◽  
J. P. Evans ◽  
L. Fita

Abstract. Regional climate models are prone to biases in precipitation that are problematic for use in impact models such as hydrology models. A large number of methods have already been proposed aimed at correcting various moments of the rainfall distribution. They all require that the model produce the same or a higher number of rain days than the observational datasets, which are usually gridded datasets. Models have traditionally met this condition because their spatial resolution was coarser than the observational grids. But recent climate simulations use higher resolution than the gridded observational products and the models are likely to produce fewer rain days than the gridded observations. In this study, model output from a simulation at 2 km resolution are compared with gridded and in-situ observational datasets to determine whether the new scenario calls for revised methodologies. The gridded observations are found to be inadequate to correct the high-resolution model at daily timescales. A histogram equalisation bias correction method is selected and adapted to the use of stations, alleviating the problems associated with relatively low-resolution observational grids. The method is efficient at bias correcting both seasonal and daily characteristics of precipitation, providing more accurate information that is crucial for impact assessment studies.


2019 ◽  
Vol 58 (12) ◽  
pp. 2617-2632 ◽  
Author(s):  
Qifen Yuan ◽  
Thordis L. Thorarinsdottir ◽  
Stein Beldring ◽  
Wai Kwok Wong ◽  
Shaochun Huang ◽  
...  

AbstractIn applications of climate information, coarse-resolution climate projections commonly need to be downscaled to a finer grid. One challenge of this requirement is the modeling of subgrid variability and the spatial and temporal dependence at the finer scale. Here, a postprocessing procedure for temperature projections is proposed that addresses this challenge. The procedure employs statistical bias correction and stochastic downscaling in two steps. In the first step, errors that are related to spatial and temporal features of the first two moments of the temperature distribution at model scale are identified and corrected. Second, residual space–time dependence at the finer scale is analyzed using a statistical model, from which realizations are generated and then combined with an appropriate climate change signal to form the downscaled projection fields. Using a high-resolution observational gridded data product, the proposed approach is applied in a case study in which projections of two regional climate models from the Coordinated Downscaling Experiment–European Domain (EURO-CORDEX) ensemble are bias corrected and downscaled to a 1 km × 1 km grid in the Trøndelag area of Norway. A cross-validation study shows that the proposed procedure generates results that better reflect the marginal distributional properties of the data product and have better consistency in space and time when compared with empirical quantile mapping.


2013 ◽  
Vol 17 (11) ◽  
pp. 4323-4337 ◽  
Author(s):  
M. A. Sunyer ◽  
H. J. D. Sørup ◽  
O. B. Christensen ◽  
H. Madsen ◽  
D. Rosbjerg ◽  
...  

Abstract. In recent years, there has been an increase in the number of climate studies addressing changes in extreme precipitation. A common step in these studies involves the assessment of the climate model performance. This is often measured by comparing climate model output with observational data. In the majority of such studies the characteristics and uncertainties of the observational data are neglected. This study addresses the influence of using different observational data sets to assess the climate model performance. Four different data sets covering Denmark using different gauge systems and comprising both networks of point measurements and gridded data sets are considered. Additionally, the influence of using different performance indices and metrics is addressed. A set of indices ranging from mean to extreme precipitation properties is calculated for all the data sets. For each of the observational data sets, the regional climate models (RCMs) are ranked according to their performance using two different metrics. These are based on the error in representing the indices and the spatial pattern. In comparison to the mean, extreme precipitation indices are highly dependent on the spatial resolution of the observations. The spatial pattern also shows differences between the observational data sets. These differences have a clear impact on the ranking of the climate models, which is highly dependent on the observational data set, the index and the metric used. The results highlight the need to be aware of the properties of observational data chosen in order to avoid overconfident and misleading conclusions with respect to climate model performance.


2020 ◽  
Author(s):  
Katrin Ziegler ◽  
Felix Pollinger ◽  
Daniel Abel ◽  
Heiko Paeth

<p class="western" align="justify"><span lang="en-US">In cooperation with the Climate Service Center Germany (GERICS) we want to improve the land surface module in the regional climate model REMO. Due to the need of high-resolution regional climate models to get information about local climate change, new data and new processes have to be integrated in these models.</span></p> <p class="western" align="justify"><span lang="en-US">Based on the REMO2015 version and focusing on EUR-CORDEX region we included and compared five different high-resolution topographic data sets. To improve the thermal and hydrological processes in the model’s soil we also tested three new soil data sets with a much higher spatial resolution and with new parameters for a new soil parameterization.</span></p>


Author(s):  
Weijia Qian ◽  
Howard H. Chang

Health impact assessments of future environmental exposures are routinely conducted to quantify population burdens associated with the changing climate. It is well-recognized that simulations from climate models need to be bias-corrected against observations to estimate future exposures. Quantile mapping (QM) is a technique that has gained popularity in climate science because of its focus on bias-correcting the entire exposure distribution. Even though improved bias-correction at the extreme tails of exposure may be particularly important for estimating health burdens, the application of QM in health impact projection has been limited. In this paper we describe and apply five QM methods to estimate excess emergency department (ED) visits due to projected changes in warm-season minimum temperature in Atlanta, USA. We utilized temperature projections from an ensemble of regional climate models in the North American-Coordinated Regional Climate Downscaling Experiment (NA-CORDEX). Across QM methods, we estimated consistent increase in ED visits across climate model ensemble under RCP 8.5 during the period 2050 to 2099. We found that QM methods can significantly reduce between-model variation in health impact projections (50–70% decreases in between-model standard deviation). Particularly, the quantile delta mapping approach had the largest reduction and is recommended also because of its ability to preserve model-projected absolute temporal changes in quantiles.


2019 ◽  
Vol 13 (7) ◽  
pp. 1801-1817 ◽  
Author(s):  
Tyler C. Sutterley ◽  
Thorsten Markus ◽  
Thomas A. Neumann ◽  
Michiel van den Broeke ◽  
J. Melchior van Wessem ◽  
...  

Abstract. We calculate rates of ice thickness change and bottom melt for ice shelves in West Antarctica and the Antarctic Peninsula from a combination of elevation measurements from NASA–CECS Antarctic ice mapping campaigns and NASA Operation IceBridge corrected for oceanic processes from measurements and models, surface velocity measurements from synthetic aperture radar, and high-resolution outputs from regional climate models. The ice thickness change rates are calculated in a Lagrangian reference frame to reduce the effects from advection of sharp vertical features, such as cracks and crevasses, that can saturate Eulerian-derived estimates. We use our method over different ice shelves in Antarctica, which vary in terms of size, repeat coverage from airborne altimetry, and dominant processes governing their recent changes. We find that the Larsen-C Ice Shelf is close to steady state over our observation period with spatial variations in ice thickness largely due to the flux divergence of the shelf. Firn and surface processes are responsible for some short-term variability in ice thickness of the Larsen-C Ice Shelf over the time period. The Wilkins Ice Shelf is sensitive to short-timescale coastal and upper-ocean processes, and basal melt is the dominant contributor to the ice thickness change over the period. At the Pine Island Ice Shelf in the critical region near the grounding zone, we find that ice shelf thickness change rates exceed 40 m yr−1, with the change dominated by strong submarine melting. Regions near the grounding zones of the Dotson and Crosson ice shelves are decreasing in thickness at rates greater than 40 m yr−1, also due to intense basal melt. NASA–CECS Antarctic ice mapping and NASA Operation IceBridge campaigns provide validation datasets for floating ice shelves at moderately high resolution when coregistered using Lagrangian methods.


2018 ◽  
Vol 22 (1) ◽  
pp. 673-687 ◽  
Author(s):  
Antoine Colmet-Daage ◽  
Emilia Sanchez-Gomez ◽  
Sophie Ricci ◽  
Cécile Llovel ◽  
Valérie Borrell Estupina ◽  
...  

Abstract. The climate change impact on mean and extreme precipitation events in the northern Mediterranean region is assessed using high-resolution EuroCORDEX and MedCORDEX simulations. The focus is made on three regions, Lez and Aude located in France, and Muga located in northeastern Spain, and eight pairs of global and regional climate models are analyzed with respect to the SAFRAN product. First the model skills are evaluated in terms of bias for the precipitation annual cycle over historical period. Then future changes in extreme precipitation, under two emission scenarios, are estimated through the computation of past/future change coefficients of quantile-ranked model precipitation outputs. Over the 1981–2010 period, the cumulative precipitation is overestimated for most models over the mountainous regions and underestimated over the coastal regions in autumn and higher-order quantile. The ensemble mean and the spread for future period remain unchanged under RCP4.5 scenario and decrease under RCP8.5 scenario. Extreme precipitation events are intensified over the three catchments with a smaller ensemble spread under RCP8.5 revealing more evident changes, especially in the later part of the 21st century.


2021 ◽  
Vol 21 (11) ◽  
pp. 3573-3598
Author(s):  
Benjamin Poschlod

Abstract. Extreme daily rainfall is an important trigger for floods in Bavaria. The dimensioning of water management structures as well as building codes is based on observational rainfall return levels. In this study, three high-resolution regional climate models (RCMs) are employed to produce 10- and 100-year daily rainfall return levels and their performance is evaluated by comparison to observational return levels. The study area is governed by different types of precipitation (stratiform, orographic, convectional) and a complex terrain, with convective precipitation also contributing to daily rainfall levels. The Canadian Regional Climate Model version 5 (CRCM5) at a 12 km spatial resolution and the Weather and Forecasting Research (WRF) model at a 5 km resolution both driven by ERA-Interim reanalysis data use parametrization schemes to simulate convection. WRF at a 1.5 km resolution driven by ERA5 reanalysis data explicitly resolves convectional processes. Applying the generalized extreme value (GEV) distribution, the CRCM5 setup can reproduce the observational 10-year return levels with an areal average bias of +6.6 % and a spatial Spearman rank correlation of ρ=0.72. The higher-resolution 5 km WRF setup is found to improve the performance in terms of bias (+4.7 %) and spatial correlation (ρ=0.82). However, the finer topographic details of the WRF-ERA5 return levels cannot be evaluated with the observation data because their spatial resolution is too low. Hence, this comparison shows no further improvement in the spatial correlation (ρ=0.82) but a small improvement in the bias (2.7 %) compared to the 5 km resolution setup. Uncertainties due to extreme value theory are explored by employing three further approaches. Applied to the WRF-ERA5 data, the GEV distributions with a fixed shape parameter (bias is +2.5 %; ρ=0.79) and the generalized Pareto (GP) distributions (bias is +2.9 %; ρ=0.81) show almost equivalent results for the 10-year return period, whereas the metastatistical extreme value (MEV) distribution leads to a slight underestimation (bias is −7.8 %; ρ=0.84). For the 100-year return level, however, the MEV distribution (bias is +2.7 %; ρ=0.73) outperforms the GEV distribution (bias is +13.3 %; ρ=0.66), the GEV distribution with fixed shape parameter (bias is +12.9 %; ρ=0.70), and the GP distribution (bias is +11.9 %; ρ=0.63). Hence, for applications where the return period is extrapolated, the MEV framework is recommended. From these results, it follows that high-resolution regional climate models are suitable for generating spatially homogeneous rainfall return level products. In regions with a sparse rain gauge density or low spatial representativeness of the stations due to complex topography, RCMs can support the observational data. Further, RCMs driven by global climate models with emission scenarios can project climate-change-induced alterations in rainfall return levels at regional to local scales. This can allow adjustment of structural design and, therefore, adaption to future precipitation conditions.


Sign in / Sign up

Export Citation Format

Share Document