scholarly journals Evapotranspiration and water yield over China's landmass from 2000 to 2010

2013 ◽  
Vol 17 (12) ◽  
pp. 4957-4980 ◽  
Author(s):  
Y. Liu ◽  
Y. Zhou ◽  
W. Ju ◽  
J. Chen ◽  
S. Wang ◽  
...  

Abstract. Terrestrial carbon and water cycles are interactively linked at various spatial and temporal scales. Evapotranspiration (ET) plays a key role in the terrestrial water cycle, altering carbon sequestration of terrestrial ecosystems. The study of ET and its response to climate and vegetation changes is critical in China because water availability is a limiting factor for the functioning of terrestrial ecosystems in vast arid and semiarid regions. To constrain uncertainties in ET estimation, the process-based Boreal Ecosystem Productivity Simulator (BEPS) model was employed in conjunction with a newly developed leaf area index (LAI) data set, MODIS land cover, meteorological, and soil data to simulate daily ET and water yield at a spatial resolution of 500 m over China for the period from 2000 to 2010. The spatial and temporal variations of ET and water yield were analyzed. The influences of climatic factors (temperature and precipitation) and vegetation (land cover types and LAI) on these variations were assessed. Validations against ET measured at five ChinaFLUX sites showed that the BEPS model was able to simulate daily and annual ET well at site scales. Simulated annual ET exhibited a distinguishable southeast to northwest decreasing gradient, corresponding to climate conditions and vegetation types. It increased with the increase of LAI in 74% of China's landmass and was positively correlated with temperature in most areas of southwest, south, east, and central China. The correlation between annual ET and precipitation was positive in the arid and semiarid areas of northwest and north China, but negative in the Tibetan Plateau and humid southeast China. The national annual ET varied from 345.5 mm in 2001 to 387.8 mm in 2005, with an average of 369.8 mm during the study period. The overall rate of increase, 1.7 mm yr−1 (R2 = 0.18, p = 0.19), was mainly driven by the increase of total ET in forests. During 2006–2009, precipitation and LAI decreased widely and consequently caused a detectable decrease in national total ET. Annual ET increased over 62.2% of China's landmass, especially in the cropland areas of the southern Haihe River basin, most of the Huaihe River basin, and the southeastern Yangtze River basin. It decreased in parts of northeast, north, northwest, south China, especially in eastern Qinghai-Tibetan Plateau, the south of Yunnan Province, and Hainan Province. Reduction in precipitation and increase in ET caused vast regions in China, especially the regions south of Yangtze River, to experience significant decreases in water yield, while some sporadically distributed areas experienced increases in water yield. This study shows that the terrestrial water cycles in China's terrestrial ecosystems appear to have been intensified by recent climatic variability and human induced vegetation changes.

2013 ◽  
Vol 10 (4) ◽  
pp. 5397-5456 ◽  
Author(s):  
Y. Liu ◽  
Y. Zhou ◽  
W. Ju ◽  
J. Chen ◽  
S. Wang ◽  
...  

Abstract. Terrestrial carbon and water cycles are interactively linked at various spatial and temporal scales. Evapotranspiration (ET) plays a key role in the terrestrial water cycle and altering carbon sequestration of terrestrial ecosystems. The study of ET and its response to climate and vegetation changes is critical in China since water availability is a limiting factor for the functioning of terrestrial ecosystems in vast arid and semiarid regions. In this study, the process-based Boreal Ecosystem Productivity Simulator (BEPS) model was employed in conjunction with a newly developed leaf area index (LAI) dataset and other spatial data to simulate daily ET and water yield at a spatial resolution of 500 m over China for the period from 2000 to 2010. The spatial and temporal variations of ET and water yield and influences of temperature, precipitation, land cover types, and LAI on ET were analyzed. The validations with ET measured at 5 typical ChinaFLUX sites and inferred using statistical hydrological data in 10 basins showed that the BEPS model was able to simulate daily and annual ET well at site and basin scales. Simulated annual ET exhibited a distinguishable southeast to northwest decreasing gradient, corresponding to climate conditions and vegetation types. It increased with the increase of LAI in 74% of China's landmass and was positively correlated with temperature in most areas of southwest, south, east, and central China and with precipitation in the arid and semiarid areas of northwest and north China. In the Tibet Plateau and humid southeast China, the increase in precipitation might cause ET to decrease. The national mean annual ET varied from 345.5 mm yr−1 in 2001 to 387.8 mm yr−1 in 2005, with an average of 369.8 mm yr−1 during the study period. The overall increase rate of 1.7 mm yr−2 (r = 0.43 p = 0.19) was mainly driven by the increase of total ET in forests. During the period from 2006 to 2009, precipitation and LAI decreased widely and consequently caused a detectable decrease of national total ET. The temporal patterns of ET varied spatially during the 11 yr study period, increasing in 62.2% of China's landmass, especially in the cropland areas of southern Haihe river basin, most of the Huaihe river basin, and southeastern Yangtze river basin. Decreases of annual ET mainly occurred in parts of northeast, north, northwest, south China, especially in eastern Qinghai-Tibet plateau, the south part of Yunnan province, and Hainan province. Vast regions in China, especially the regions south of Yangtze river, experienced significant decreases in water yield caused by the reduction of precipitation and increase of ET while some areas sporadically distributed in northeast, east, northwest, central, and south China experienced increases in water yield. This study shows that recent climatic variability and human activity induced vegetations changes have intensified the terrestrial water cycles in China's terrestrial ecosystems, which is worthy of further thorough investigation.


2013 ◽  
Vol 17 (5) ◽  
pp. 1985-2000 ◽  
Author(s):  
Y. Huang ◽  
M. S. Salama ◽  
M. S. Krol ◽  
R. van der Velde ◽  
A. Y. Hoekstra ◽  
...  

Abstract. In this study, we analyze 32 yr of terrestrial water storage (TWS) data obtained from the Interim Reanalysis Data (ERA-Interim) and Noah model from the Global Land Data Assimilation System (GLDAS-Noah) for the period 1979 to 2010. The accuracy of these datasets is validated using 26 yr (1979–2004) of runoff data from the Yichang gauging station and comparing them with 32 yr of independent precipitation data obtained from the Global Precipitation Climatology Centre Full Data Reanalysis Version 6 (GPCC) and NOAA's PRECipitation REConstruction over Land (PREC/L). Spatial and temporal analysis of the TWS data shows that TWS in the Yangtze River basin has decreased significantly since the year 1998. The driest period in the basin occurred between 2005 and 2010, and particularly in the middle and lower Yangtze reaches. The TWS figures changed abruptly to persistently high negative anomalies in the middle and lower Yangtze reaches in 2004. The year 2006 is identified as major inflection point, at which the system starts exhibiting a persistent decrease in TWS. Comparing these TWS trends with independent precipitation datasets shows that the recent decrease in TWS can be attributed mainly to a decrease in the amount of precipitation. Our findings are based on observations and modeling datasets and confirm previous results based on gauging station datasets.


2016 ◽  
Author(s):  
Xiaomang Liu ◽  
Tiantian Yang ◽  
Koulin Hsu ◽  
Changming Liu ◽  
Soroosh Sorooshian

Abstract. On the Tibetan Plateau, the limited ground-based rainfall information owing to a harsh environment has brought great challenges to hydrological studies. Satellite-based rainfall products, which allow a better coverage than both radar network and rain gauges on the Tibetan Plateau, can be suitable observation alternatives for investigating the hydrological processes and climate change. In this study, a newly developed daily satellite-based precipitation product, termed Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR), is used as input of a hydrologic model to simulate streamflow in the upper Yellow and Yangtze River Basin on the Tibetan Plateau. The results show that the simulated streamflow using PERSIANN-CDR precipitation is closer to observation than that using limited gauge-based precipitation interpolation in the upper Yangtze River Basin. The simulated streamflow using gauge-based precipitation are higher than the streamflow observation during the wet season. In the upper Yellow River Basin, PERSIANN-CDR precipitation and gauge-based precipitation have similar good performance in simulating streamflow. The evaluation of streamflow simulation capability in this study partly indicates that PERSIANN-CDR rainfall product has good potentials to be a reliable dataset and an alternative information source besides the sparse gauge network for conducting long term hydrological and climate studies on the Tibetan Plateau.


2021 ◽  
Vol 132 ◽  
pp. 108304
Author(s):  
Xiu Zhang ◽  
Guanshi Zhang ◽  
Xie Long ◽  
Qi Zhang ◽  
Dongsheng Liu ◽  
...  

Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 428 ◽  
Author(s):  
Yu Xu ◽  
Yanhong Gao

The Southeastern Tibetan Plateau (SETP) and the Middle Yangtze River Basin (MYRB) show a large difference in their levels of precipitation, despite the fact that they are located within the same latitude band. The annual precipitation in the MYRB is much higher than in the SETP. Precipitation has decreased in the past three decades in both regions. To clarify the difference in precipitation and its changes between these two regions in recent decades, a quasi-isentropic backward trajectory (QIBT) model is used to track the evaporative source with the ERA-Interim reanalysis as the baseline. The wet seasons (from April to September) over the period of 1982–2011 were analyzed. Evaporative sources were divided into an oceanic portion and a terrestrial portion, in which local recycling was included. Our conclusions are as follows. A terrestrial evaporative source, including a neighboring terrestrial land source and local source, dominates both regions, although the summer monsoon regulates precipitation in the wet season. The local precipitation recycling ratio is 35% in the SETP and 29% in the MYRB. The oceanic evaporative source in the MYRB is five times larger than that in the SETP. The decrease in the oceanic evaporative source in the Indian Ocean is responsible for the decrease in precipitation in the SETP. In the MYRB, decreases in neighboring terrestrial sources dominate the precipitation decline. Regardless of the decreases in the remote oceanic or neighboring terrestrial evaporative sources, the local recycling ratio increased in both regions.


2020 ◽  
Vol 12 (6) ◽  
pp. 2198 ◽  
Author(s):  
Zhenzhen Liu ◽  
Hang Wang ◽  
Ning Li ◽  
Jun Zhu ◽  
Ziwu Pan ◽  
...  

In this study, MODIS normalized difference vegetation index (NDVI), TRMM3B43 precipitation, and MOD11A2 land-surface temperature (LST) data were used as data sources in an analysis of temporal and spatial characteristics of vegetation changes and ecological environmental quality in the Huaihe River basin, China, from 2003 to 2018. The Mann–Kendall (MK) non-parametric test and the Theil–Sen slope test were combined for this analysis; then, when combined with the results of the MK mutation test and two introduced indexes, the kurtosis coefficient (KU) and skewness (SK) and correlations between NDVI, precipitation (TRMM), and land-surface temperature (LST) in different time scales were revealed. The results illustrate that the mean NDVI in the Huaihe River basin was 0.54. The annual NDVImax curve fluctuations for different land cover types were almost the same. The main reasons for the decrease in or disappearance of vegetation cover in the Huaihe River basin were the expansion of towns and impact of human activities. Furthermore, vegetation cover around water areas was obviously degraded and wetland protections need to be strengthened urgently. On the same time scale, change trends of NDVI, TRMM, and LST after abrupt changes became consistent within a short time period. Vegetation growth was favored when the KU and SK of TRMM had a close to normal distribution within one year. Monthly TRMM and LST can better reflect NDVI fluctuations compared with seasonal and annual scales. When the precipitation (TRMM) is less than 767 mm, the average annual NDVI of different land cover types is not ideal. Compared with other land cover types, dry land has stronger adaptability to changes in the LST when the LST is between 19 and 22.6 °C. These trends can serve as scientific reference for protecting and managing the ecological environment in the Huaihe River basin.


Sign in / Sign up

Export Citation Format

Share Document