scholarly journals Effect of meteorological forcing and snow model complexity on hydrological simulations in the Sieber catchment (Harz Mountains, Germany)

2014 ◽  
Vol 18 (11) ◽  
pp. 4703-4720 ◽  
Author(s):  
K. Förster ◽  
G. Meon ◽  
T. Marke ◽  
U. Strasser

Abstract. Detailed physically based snow models using energy balance approaches are spatially and temporally transferable and hence regarded as particularly suited for scenario applications including changing climate or land use. However, these snow models place high demands on meteorological input data at the model scale. Besides precipitation and temperature, time series of humidity, wind speed, and radiation have to be provided. In many catchments these time series are rarely available or provided by a few meteorological stations only. This study analyzes the effect of improved meteorological input on the results of four snow models with different complexity for the Sieber catchment (44.4 km2) in the Harz Mountains, Germany. The Weather Research and Forecast model (WRF) is applied to derive spatial and temporal fields of meteorological surface variables at hourly temporal resolution for a regular grid of 1.1 km × 1.1 km. All snow models are evaluated at the point and the catchment scale. For catchment-scale simulations, all snow models were integrated into the hydrological modeling system PANTA RHEI. The model results achieved with a simple temperature-index model using observed precipitation and temperature time series as input are compared to those achieved with WRF input. Due to a mismatch between modeled and observed precipitation, the observed melt runoff as provided by a snow lysimeter and the observed streamflow are better reproduced by application of observed meteorological input data. In total, precipitation is simulated statistically reasonably at the seasonal scale but some single precipitation events are not captured by the WRF data set. Regarding the model efficiencies achieved for all simulations using WRF data, energy balance approaches generally perform similarly compared to the temperature-index approach and partially outperform the latter.

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Dirk Nikolaus Karger ◽  
Dirk R. Schmatz ◽  
Gabriel Dettling ◽  
Niklaus E. Zimmermann

2009 ◽  
Vol 26 (4) ◽  
pp. 806-817 ◽  
Author(s):  
M. G. G. Foreman ◽  
J. Y. Cherniawsky ◽  
V. A. Ballantyne

Abstract New computer software that permits more versatility in the harmonic analysis of tidal time series is described and tested. Specific improvements to traditional methods include the analysis of randomly sampled and/or multiyear data; more accurate nodal correction, inference, and astronomical argument adjustments through direct incorporation in the least squares matrix; multiconstituent inferences from a single reference constituent; correlation matrices and error estimates that facilitate decisions on the selection of constituents for the analysis; and a single program that analyzes one- or two-dimensional time series. This new methodology is evaluated through comparisons with results from old techniques and then applied to two problems that could not have been accurately solved with older software. They are (i) the analysis of ocean station temperature time series spanning 25 yr, and (ii) the analysis of satellite altimetry from a ground track whose proximity to land has led to significant data dropout. This new software is free as part of the Institute of Ocean Sciences (IOS) Tidal Package and can be downloaded, along with sample input data and an explanatory readme file.


2015 ◽  
Vol 51 (1) ◽  
pp. 198-212 ◽  
Author(s):  
Dylan J. Irvine ◽  
Roger H. Cranswick ◽  
Craig T. Simmons ◽  
Margaret A. Shanafield ◽  
Laura K. Lautz

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Malvina Silvestri ◽  
Federico Rabuffi ◽  
Massimo Musacchio ◽  
Sergio Teggi ◽  
Maria Fabrizia Buongiorno

In this work, the land surface temperature time series derived using Thermal InfraRed (TIR) satellite data offers the possibility to detect thermal anomalies by using the PCA method. This approach produces very detailed maps of thermal anomalies, both in geothermal areas and in urban areas. Tests were conducted on the following three Italian sites: Solfatara-Campi Flegrei (Naples), Parco delle Biancane (Grosseto) and Modena city.


Sign in / Sign up

Export Citation Format

Share Document