scholarly journals Flooding in river mouths: human caused or natural events? Five centuries of flooding events in the SW Netherlands, 1500–2000

2015 ◽  
Vol 19 (6) ◽  
pp. 2673-2684 ◽  
Author(s):  
A. M. J. de Kraker

Abstract. This paper looks into flood events of the past 500 years in the SW Netherlands, addressing the issue of what kind of flooding events have occurred and which ones have mainly natural causes and which ones are predominantly human induced. The flood events are classified into two major categories: (a) flood events that were caused during storm surges and (b) flood events which happened during warfare. From both categories a selection of flood events has been made. Each flood event is discussed in terms of time, location, extent of the flooded area and specific conditions. Among these conditions, specific weather circumstances and how long they lasted, the highest water levels reached and dike maintenance are discussed as far as flood events caused during storm surges are concerned. Flood events during warfare as both offensive and defensive strategies are relevant; the paper demonstrates that although the strategic flood events obviously were man-made, the natural feature, being the use of fresh water or sea water, of these events also played a major role. Flood events caused during storm surge may have an obvious natural cause, but the extent of the flooding and damage it caused was largely determined by man.

2015 ◽  
Vol 12 (1) ◽  
pp. 1437-1468 ◽  
Author(s):  
A. M. J. de Kraker

Abstract. This paper looks into the flooding events of the past 500 years in the SW Netherlands addressing the issue what kind of flooding events have occurred and which ones have mainly natural causes and which ones are predominantly human induced. The flooding events are classified into two major categories: (a) flooding events that were caused during storm surges and (b) flooding events which happened during war fare. From both categories a selection of flooding events has been made. Each flooding event is discussed in terms time, location, extent of the flooded area and specific conditions. Among these conditions specific weather circumstances and how long they lasted, the highest water levels reached and dike maintenance are discussed as far as flooding events caused during storm surges are concerned. About the flooding events during war fare, offensive and defensive strategies are relevant. The paper demonstrates that although the strategic flooding events obviously were man-made, the natural feature, being the use of fresh water or sea water, of these events also played a major role. Flooding events caused during storm surge may have an obvious natural cause, but the extent of the flooding and damage it caused were largely determined by man.


2001 ◽  
Vol 79 (3) ◽  
pp. 341-361 ◽  
Author(s):  
Stefan Hotes ◽  
Peter Poschlod ◽  
Hiroshige Sakai ◽  
Takashi Inoue

Mires in coastal lowlands in Hokkaido, northern Japan, have repeatedly been affected by flooding events and tephra (aerially transported volcanic ejecta) deposition during their development. Vegetation, hydrology, and stratigraphy of Kiritappu Mire in eastern Hokkaido were investigated along two transects and are discussed in relation to disturbance by mineral deposition. The vegetation pattern showed little relation to past geologic events. Five plant communities, two of which (A and C) could be further divided into subgroups, were distinguished (A, Alnus japonica - Spiraea salicifolia community; B, Sasa chartacea community; C, Myrica gale var. tomentosa - Sphagnum fuscum community; D, Carex lyngbyei community; E, Carex subspathacea - Aster tripolium community). Water levels, pH, electric conductivity, and ionic composition of groundwater and surface water were measured in communities A-C. Mean water levels were similar in communities A and C; in community B, it was lower. The pH was higher in community A than in communities B and C. Ion concentrations were influenced by sea water at some sites. Plant macrofossils and ash contents of 31 cores were analysed. Sedge roots were the dominant peat component, often mixed with remains of Phragmites australis, Sphagnum spp., and Polytrichum juniperinum var. strictum. Ash contents were high, and up to nine different mineral layers consisting of tephra, sand, silt, and clay were detected. In some cases, mineral deposition induced changes in the macrofossil composition of the peat. However, in a greater number of cases, no changes in the macrofossil composition were found at the mineral layers, and most shifts were not related to mineral deposition.Key words: mire, vegetation, hydrology, disturbance, flooding, tephra.


2021 ◽  
Author(s):  
Markus Rolf ◽  
Martin G. J. Löder ◽  
Hannes Laermanns ◽  
Lukas Kienzler ◽  
Florian Steininger ◽  
...  

<p>The Rhine River flows through six European countries and is in exchange with diverse land use forms and human activities that potentially release microplastics (MPs). The Rhine interacts permanently with its surrounding banks and floodplains by changing water-levels. Several studies have documented the presence of MPs in the Rhine along its course as well as in its tributaries. However, the spatial distribution of MPs due to certain flood events in alluvial floodplains remains widely unclear. The knowledge about the amount and distribution of MPs and on their potential entry pathways into Rhine floodplains is essentially important for an ecological risk assessment. In this study, we analysed the amount and distribution of MPs in a floodplain soil in the nature reserve Merkenich-Langel, in the northern periphery of Cologne (Germany). We hypothesize that MPs are transported by the Rhine and are deposited at the site during flood events. For spatial analysis we used the MIKE software (DHI A/S, Hørsholm Denmark) merged with a digital terrain model of the study site to analyse past flood events and their potential deposition of MP. We chose three sampling transects located within the past flooded area each with three sampling spots with increasing distance and elevation to the river. Samples were taken from two different soil depths (0–5 cm and 5–20 cm) and the samples of the three sampling spots and same depth were combined to one mixed soil sample per transect. MP concentrations were analysed via ATR-FTIR and µ-FPA-FTIR spectroscopy after density separation and enzymatic-oxidative purification. We found an increase of MP concentration per kg of dry soil in the depth 5–20 cm with increasing distance to the river ranging from 25.612 particles/kg to 85.076 particles/kg. The results of MP concentration in 0–5 cm topsoil layer will be compared to the concentration in the soil depth of 5–20 cm. We correlate these results to the frequency of flood events.</p>


Ocean Science ◽  
2009 ◽  
Vol 5 (3) ◽  
pp. 369-378 ◽  
Author(s):  
A. Sterl ◽  
H. van den Brink ◽  
H. de Vries ◽  
R. Haarsma ◽  
E. van Meijgaard

Abstract. The height of storm surges is extremely important for a low-lying country like The Netherlands. By law, part of the coastal defence system has to withstand a water level that on average occurs only once every 10 000 years. The question then arises whether and how climate change affects the heights of extreme storm surges. Published research points to only small changes. However, due to the limited amount of data available results are usually limited to relatively frequent extremes like the annual 99%-ile. We here report on results from a 17-member ensemble of North Sea water levels spaning the period 1950–2100. It was created by forcing a surge model of the North Sea with meteorological output from a state-of-the-art global climate model which has been driven by greenhouse gas emissions following the SRES A1b scenario. The large ensemble size enables us to calculate 10 000 year return water levels with a low statistical uncertainty. In the one model used in this study, we find no statistically significant change in the 10 000 year return values of surge heights along the Dutch during the 21st century. Also a higher sea level resulting from global warming does not impact the height of the storm surges. As a side effect of our simulations we also obtain results on the interplay between surge and tide.


Author(s):  
Dylan Anderson ◽  
Peter Ruggiero ◽  
Fernando J. Mendez ◽  
Ana Rueda ◽  
Jose A. Antolinez ◽  
...  

The ability to predict coastal flooding events and associated impacts has emerged as a primary societal need within the context of projected sea level rise (SLR) and climate change. The duration and extent of flooding is the result of nonlinear interactions between multiple environmental forcings (oceanographic, meteorological, hydrological) acting at varying spatial (local to global) and temporal scales (hours to centuries). Individual components contributing to total water levels (TWLs) include astronomical tides, monthly sea level anomalies, storm surges, and wave setup. Common practices often use the observational record of extreme water levels to estimate return levels of future extremes. However, such projections often do not account for the individual contribution of processes resulting in compound TWL events, nor do they account for time-dependent probabilities due to seasonal, interannual, and long-term oscillations within the climate system. More robust estimates of coastal flooding risk require the computation of joint probabilities and the simulation of hypothetical TWLs to better constrain the projection of extremes (Serafin [2014]).


2021 ◽  
Vol 8 ◽  
Author(s):  
Wilmer Rey ◽  
Pablo Ruiz-Salcines ◽  
Paulo Salles ◽  
Claudia P. Urbano-Latorre ◽  
Germán Escobar-Olaya ◽  
...  

Despite the low occurrence of tropical cyclones at the archipelago of San Andres, Providencia, and Santa Catalina (Colombia), Hurricane Iota in 2020 made evident the area vulnerability to tropical cyclones as major hazards by obliterating 56.4 % of housing, partially destroying the remaining houses in Providencia. We investigated the hurricane storm surge inundation in the archipelago by forcing hydrodynamic models with synthetic tropical cyclones and hypothetical hurricanes. The storm surge from synthetic events allowed identifying the strongest surges using the probability distribution, enabling the generation of hurricane storm surge flood maps for 100 and 500 year return periods. This analysis suggested that the east of San Andres and Providencia are the more likely areas to be flooded from hurricanes storm surges. The hypothetical events were used to force the hydrodynamic model to create worst-case flood scenario maps, useful for contingency and development planning. Additionally, Hurricane Iota flood levels were calculated using 2D and 1D models. The 2D model included storm surge (SS), SS with astronomical tides (AT), and SS with AT and wave setup (WS), resulting in a total flooded area (percentage related to Providencia’s total area) of 67.05 ha (3.25 %), 65.23 ha (3.16 %), and 76.68 ha (3.68%), respectively. While Hurricane Iota occurred during low tide, the WS contributed 14.93 % (11.45 ha) of the total flooded area in Providencia. The 1D approximation showed that during the storm peak in the eastern of the island, the contribution of AT, SS, and wave runup to the maximum sea water level was −3.01%, 46.36%, and 56.55 %, respectively. This finding provides evidence of the water level underestimation in insular environments when modeling SS without wave contributions. The maximum SS derived from Iota was 1.25 m at the east of Providencia, which according to this study has an associated return period of 3,234 years. The methodology proposed in this study can be applied to other coastal zones and may include the effect of climate change on hurricane storm surges and sea-level rise. Results from this study are useful for emergency managers, government, coastal communities, and policymakers as civil protection measures.


2009 ◽  
Vol 6 (2) ◽  
pp. 1031-1059 ◽  
Author(s):  
A. Sterl ◽  
H. van den Brink ◽  
H. de Vries ◽  
R. Haarsma ◽  
E. van Meijgaard

Abstract. The height of storm surges is extremely important for a low-lying country like the Netherlands. By law, part of the coastal defence system has to withstand a water level that on average occurs only once every 10 000 years. The question then arises whether and how climate change affects the heights of extreme storm surges. Published research points to only small changes. However, due to the limited amount of data available results are usually limited to relatively frequent extremes like the annual 99%-ile. We here report on results from a 17-member ensemble of North Sea water levels spaning the period 1950–2100. It was created by forcing a surge model of the North Sea with meteorological output from a state-of-the-art global climate model which has been driven by greenhouse gas emissions following the SRES A1b scenario. The large ensemble size enables us to calculate 10 000 year return water levels with a low statistical uncertainty. We find no statistically significant change in the 10 000 year return values of surge heights along the Dutch during the 21st century. Also a higher sea level resulting from global warming does not impact the height of the storm surges. As a side effect of our simulations we also obtain results on the interplay between surge and tide.


Author(s):  
Vladimir Fomin ◽  
Vladimir Fomin ◽  
Dmitrii Alekseev ◽  
Dmitrii Alekseev ◽  
Dmitrii Lazorenko ◽  
...  

Storm surges and wind waves are ones of the most important hydrological characteristics, which determine dynamics of the Sea of Azov. Extreme storm surges in Taganrog Bay and flooding in the Don Delta can be formed under the effect of strong western winds. In this work the sea level oscillations and wind waves in the Taganrog Bay were simulated by means of the coupled SWAN+ADCIRC numerical model, taking into account the flooding and drying mechanisms. The calculations were carried out on an unstructured mesh with high resolution. The wind and atmospheric pressure fields for the extreme storm from 20 to 28 of September, 2014 obtained from WRF regional atmospheric model were used as forcing. The analysis of simulation results showed the following. The western and northern parts of the Don Delta were the most flood-prone during the storm. The size of the flooded area of the Don Delta exceeded 50%. Interaction of storm surge and wind wave accelerated the flooding process, increased the size of the flooded area and led to the intensification of wind waves in the upper of Taganrog Bay due to the general rise of the sea level.


2021 ◽  
Vol 13 (15) ◽  
pp. 8612
Author(s):  
Michalis Diakakis ◽  
Katerina Papagiannaki

Despite the important advances in flood forecasting and protection, floods remain one of the most lethal types of natural hazards. Previous works have explored several factors influencing the risks of flooding to human life and health. However, there is limited research and understanding on indoor flood fatalities and the circumstances under which they occur. This study explores victim-, building-, and situation-related characteristics in order to provide a better understanding of the conditions that lead to flood-related indoor deaths, exploiting a fatality database developed for Greece (1960–2020). The correlation analysis showed that indoor victims, compared with outdoor ones, tend to be older individuals, with high percentages of disabilities. A significant statistical association of the building material, roof type, and distance from the river with the building collapse was also found. The profile of the buildings in which flood fatality occurred was further compared with that of neighboring non-fatal buildings that were inhabited during the flood events. The statistical results indicated that the buildings with a fatality occurrence are mostly single-storey structures, made from masonry as the main building material. The findings have practical implications in risk communication and mitigation in terms of identifying the specific populations, circumstances, settings, and mechanisms that lead to dangerous indoor situations during flooding events.


1982 ◽  
Vol 101 (1) ◽  
pp. 295-305 ◽  
Author(s):  
DAVID H. EVANS ◽  
AIMO OIKARI ◽  
GREGG A. KORMANIK ◽  
LEIGH MANSBERGER

Late in gestation of the ovoviviparous dogfish, Squalus acanthias, the uterine fluids are essentially sea water, while the plasma of the ‘pup’ is similar to that of the female, i.e. isotonic to sea water/uterine fluids, with significantly less Na and Cl, and substantial concentrations of urea. Early ‘candle’ embryos are bathed in ‘candle’ fluid and uterine fluid which contains Na and Cl concentrations intermediate between maternal plasma and sea water levels, K concentrations above sea water levels, and urea concentrations slightly below those found in the maternal plasma. Both fluids are isotonic to sea water and maternal plasma. Incubation of ‘candles’ with associated embryos in sea water for 4–6 days resulted in significant increases in ‘candle’ fluid Na and Cl concentrations, and a decline in ‘candle’ fluid K and urea levels. However, under these conditions, the ‘candle’ embryo is still able to regulate plasma Na, Cl, K and urea concentrations. The efflux of Cl is approximately 5 times the efflux of Na from the prenatal ‘pup’; however, both effluxes are equivalent to those described for adult elasmobranchs. The transepithelial electrical potential (TEP) across the ‘pup’ is −4.4 mV in sea water, which indicates that both Na and Cl are maintained out of electrochemical equilibrium. Cloacal fluid flows vary diurnally with Na and Cl concentrations significantly above those of the plasma. Rectal gland efflux can account for 50–100% of the Na efflux, but less than 25% of the Cl efflux. Removal of the rectal gland resulted in an increase in plasma Na and Cl concentrations 48 or 72 h after the operation, but in both cases it appears that some extra rectal gland excretory system balances at least some of the net influx of both salts. Our results demonstrate that even very young ‘candle’ embryos of S. acanthias are capable of osmoregulation, and that older embryos (‘pups') osmoregulate against sea water intra-utero and display the major hallmarks of elasmobranch osmoregulation, including a reduced ionic permeability and a functional rectal gland for net extrusion of NaCl. In addition, it appears that other pathways exist for salt extrusion in addition to the rectal gland. Note:


Sign in / Sign up

Export Citation Format

Share Document