scholarly journals Supplementary material to "Sensitivity of future water availability projections to Global Climate Model, evapotranspiration estimation method, and greenhouse gas emission scenario"

Author(s):  
S. Chang ◽  
W. D. Graham ◽  
S. Hwang ◽  
R. Muñoz-Carpena
2016 ◽  
Author(s):  
S. Chang ◽  
W. D. Graham ◽  
S. Hwang ◽  
R. Muñoz-Carpena

Abstract. Projecting water availability under various possible future climate scenarios depends on the choice of Global Climate Model (GCM), evapotranspiration (ET) estimation method and Representative Concentration Pathway (RCP) trajectory. The relative contribution of each of these factors must be evaluated in order to choose an appropriate ensemble of future scenarios for water resources planning. In this study variance-based global sensitivity analysis and Monte Carlo filtering were used to evaluate the relative sensitivity of projected changes in precipitation (P), ET and water availability (defined here as P–ET) to choice of GCM, ET estimation method and RCP trajectory over the continental United States (US) for two distinct future periods: 2030–2060 (future period 1) and 2070–2100 (future period 2). A total of 9 GCMs, 10 ET methods and 3 RCP trajectories were used to quantify the range of future projections and estimate the relative sensitivity of future projections to each of these factors. In general, for all regions of the US, changes in future precipitation are most sensitive to the choice of GCM, while changes in future ET are most sensitive to the choice of ET estimation method. For changes in future water availability, the choice of GCM is the most influential factor in the cool season (December–March) and the choice of ET estimation method is most important in the warm season (May–October) for all regions except the South East US where GCM and ET have approximately equal influence throughout most of the year. Although the choice of RCP trajectory is generally less important than the choice of GCM or ET method, the impact of RCP trajectory increases in future period 2 over future period 1 for all factors. Monte Carlo filtering results indicate that particular GCMs and ET methods drive the projection of wetter or drier future conditions much more than RCP trajectory; however the set of GCMs and ET methods that produce wetter or drier projections varies substantially by region. Results of this study indicate that, in addition to using an ensemble of GCMs and several RCP trajectories, a range of regionally-relevant ET estimation methods should be used to develop a robust range of future conditions for water resource planning under climate change.


2012 ◽  
Vol 28 (3) ◽  
pp. 243-253 ◽  
Author(s):  
Michael Curran ◽  
Mirjam Kopp ◽  
Jan Beck ◽  
Jakob Fahr

Abstract:A climate model, based on effects of water availability and temperature, was recently proposed to explain global variation in bat species richness along altitudinal gradients. Yet such studies are sparse in the tropics and near-absent in Africa. Here we present results from an altitudinal study of bat diversity from Mount Mulanje, Malawi. Using ground nets, canopy nets and harp traps, we sampled eight sites across three habitat zones from 630 m to 2010 m asl. We assessed the influence of climatic, geographic and biotic variables on measures of estimated species richness, Fisher's α, and an unbiased index of compositional turnover. We recorded 723 individuals and 30 species along the gradient, revealing a ‘low plateau’ pattern in estimated species richness, peaking at 1220 m, which is congruent with the global climate model. Measures of local habitat structure significantly explained a large degree of variation in species richness and compositional turnover between sites. Fisher's α was further significantly correlated to mean annual relative humidity, suggesting a background climatic influence.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3211
Author(s):  
Lauren Lynam ◽  
Thomas Piechota

Future streamflow in California is evaluated based on eight climate projections models and the effects on water availability. The unimpaired projected streamflow for eleven California rivers, collected from Cal-Adapt, are compared with unimpaired historical flows (1950–2015) using eight climate model projections (2020–2099) identified as representative as possible future scenarios; Warm Dry RCP 4.5, Average RCP 4.5, Cool Wet RCP 4.5, Other RCP 4.5, Warm Dry RCP 8.5, Average RCP 8.5, Cool Wet RCP 8.5, and Other RCP 8.5. Projected drought deficits (or magnitudes), durations, and intensities are statistically tested against historical values to determine significance of differences between past streamflow and future streamflow. The models show significant differences between historical and projected streamflow with all three drought categories (deficit, duration, intensity), using difference in means t-tests. Warm Dry and Other simulations are projected to have larger droughts (2–3 times larger) than the historical record. Average and Cool Wet simulations are projected to have fewer droughts than the historical period. Results are consistent for 4.5 and 8.5 RCP scenarios that represent two different greenhouse gas emission levels. Potential impacts of such streamflow variations are discussed.


2013 ◽  
Vol 1 (6) ◽  
pp. 7357-7385 ◽  
Author(s):  
J. M. Delgado ◽  
B. Merz ◽  
H. Apel

Abstract. Flood hazard projections under climate change are typically derived by applying model chains consisting of the following elements: "emission scenario – global climate model – downscaling, possibly including bias correction – hydrological model – flood frequency analysis". To date, this approach yields very uncertain results, due to the difficulties of global and regional climate models to represent precipitation. The implementation of such model chains requires large efforts, and their complexity is high. We propose for the Mekong River an alternative approach which is based on a shortened model chain: "emission scenario – global climate model – non-stationary flood frequency model". The underlying idea is to use a link between the Western Pacific monsoon and local flood characteristics: the variance of the monsoon drives a nonstationary flood frequency model, yielding a direct estimate of flood probabilities. This approach bypasses the uncertain precipitation, since the monsoon variance is derived from large-scale wind fields which are better represented by climate models. The simplicity of the monsoon-flood link allows deriving large ensembles of flood projections under climate change. We conclude that this is a worthwhile, complementary approach to the typical model chains in catchments where a substantial link between climate and floods is found.


Author(s):  
O. N. Nasonova ◽  
Y. M. Gusev ◽  
E. M. Volodin ◽  
E. E. Kovalev

Abstract. The objective of the present study is application of the land surface model SWAP to project climate change impact on northern Russian river runoff up to 2100 using meteorological projections from the atmosphere–ocean global climate model INMCM4.0. The study was performed for the Northern Dvina River and the Kolyma River characterized by different climatic conditions. The ability of both models to reproduce the observed river runoff was investigated. To apply SWAP for hydrological projections, the robustness of the model was evaluated. The river runoff projections up to 2100 were calculated for two greenhouse gas emission scenarios: RCP8.5 and RCP4.5 prepared for the phase five of the Coupled Model Intercomparison Project (CMIP5). For each scenario, several runoff projections were obtained using different models (INMCM4.0 and SWAP) and different post-processing techniques for correcting biases in meteorological forcing data. Differences among the runoff projections obtained for the same emission scenario and the same period illustrate uncertainties resulted from application of different models and bias-correcting techniques.


2014 ◽  
Vol 14 (6) ◽  
pp. 1579-1589 ◽  
Author(s):  
J. M. Delgado ◽  
B. Merz ◽  
H. Apel

Abstract. Flood hazard projections under climate change are typically derived by applying model chains consisting of the following elements: "emission scenario – global climate model – downscaling, possibly including bias correction – hydrological model – flood frequency analysis". To date, this approach yields very uncertain results, due to the difficulties of global and regional climate models to represent precipitation. The implementation of such model chains requires major efforts, and their complexity is high. We propose for the Mekong River an alternative approach which is based on a shortened model chain: "emission scenario – global climate model – non-stationary flood frequency model". The underlying idea is to use a link between the Western Pacific monsoon and local flood characteristics: the variance of the monsoon drives a non-stationary flood frequency model, yielding a direct estimate of flood probabilities. This approach bypasses the uncertain precipitation, since the monsoon variance is derived from large-scale wind fields which are better represented by climate models. The simplicity of the monsoon–flood link allows deriving large ensembles of flood projections under climate change. We conclude that this is a worthwhile, complementary approach to the typical model chains in catchments where a substantial link between climate and floods is found.


Sign in / Sign up

Export Citation Format

Share Document