scholarly journals Waning habitats due to climate change: effects of streamflow and temperature changes at the rear edge of the distribution of a cold-water fish

Author(s):  
José M. Santiago ◽  
Rafael Muñoz-Mas ◽  
Joaquín Solana ◽  
Diego García de Jalón ◽  
Carlos Alonso ◽  
...  

Abstract. Climate change affects aquatic ecosystems altering temperature and precipitation patterns, and the rear edge of the distribution of cold-water species is especially sensitive to them. The main goal was to predict in detail how change in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (brown trout, Salmo trutta Linnaeus 1758), and their synergistic relationships at the rear edge of its natural distribution. 31 sites in 14 mountain rivers and streams were studied in Central Spain. Models at several sites were built using regression trees for streamflow, and a non-linear regression method for stream temperature. Nine global climate models simulations for the RCP4.5 and RCP8.5 (Representative Concentration Pathways) scenarios were downscaled to a local level. Significant streamflow reductions were predicted in all basins (max. −49 %) by the year 2099, showing seasonal differences between them. The stream temperature models showed relationships between models parameters, geology and hydrologic responses. Temperature was sensitive to the streamflow in one set of streams, and summer reductions contributed to additional stream temperature increases (max. 3.6 °C), although the most deep-aquifer dependent sites better resisted warming. The predicted increase in water temperature reached up to 4.0 °C. Temperature and streamflow changes will cause a shift of the rear edge of the species distribution. However, geology conditioned the extent of this shift. Approaches like these should be useful in planning the prevention and mitigation of negative effects of climate change by differentiating areas based on the risk level and viability of fish populations.

2017 ◽  
Vol 21 (8) ◽  
pp. 4073-4101 ◽  
Author(s):  
José María Santiago ◽  
Rafael Muñoz-Mas ◽  
Joaquín Solana-Gutiérrez ◽  
Diego García de Jalón ◽  
Carlos Alonso ◽  
...  

Abstract. Climate changes affect aquatic ecosystems by altering temperatures and precipitation patterns, and the rear edges of the distributions of cold-water species are especially sensitive to these effects. The main goal of this study was to predict in detail how changes in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (the brown trout, Salmo trutta), and the synergistic relationships among these variables at the rear edge of the natural distribution of brown trout. Thirty-one sites in 14 mountain rivers and streams were studied in central Spain. Models of streamflow were built for several of these sites using M5 model trees, and a non-linear regression method was used to estimate stream temperatures. Nine global climate models simulations for Representative Concentration Pathways RCP4.5 and RCP8.5 scenarios were downscaled to the local level. Significant reductions in streamflow were predicted to occur in all of the basins (max. −49 %) by the year 2099, and seasonal differences were noted between the basins. The stream temperature models showed relationships between the model parameters, geology and hydrologic responses. Temperature was sensitive to streamflow in one set of streams, and summer reductions in streamflow contributed to additional stream temperature increases (max. 3.6 °C), although the sites that are most dependent on deep aquifers will likely resist warming to a greater degree. The predicted increases in water temperatures were as high as 4.0 °C. Temperature and streamflow changes will cause a shift in the rear edge of the distribution of this species. However, geology will affect the extent of this shift. Approaches like the one used herein have proven to be useful in planning the prevention and mitigation of the negative effects of climate change by differentiating areas based on the risk level and viability of fish populations.


Climate ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 139
Author(s):  
Manashi Paul ◽  
Sijal Dangol ◽  
Vitaly Kholodovsky ◽  
Amy R. Sapkota ◽  
Masoud Negahban-Azar ◽  
...  

Crop yield depends on multiple factors, including climate conditions, soil characteristics, and available water. The objective of this study was to evaluate the impact of projected temperature and precipitation changes on crop yields in the Monocacy River Watershed in the Mid-Atlantic United States based on climate change scenarios. The Soil and Water Assessment Tool (SWAT) was applied to simulate watershed hydrology and crop yield. To evaluate the effect of future climate projections, four global climate models (GCMs) and three representative concentration pathways (RCP 4.5, 6, and 8.5) were used in the SWAT model. According to all GCMs and RCPs, a warmer climate with a wetter Autumn and Spring and a drier late Summer season is anticipated by mid and late century in this region. To evaluate future management strategies, water budget and crop yields were assessed for two scenarios: current rainfed and adaptive irrigated conditions. Irrigation would improve corn yields during mid-century across all scenarios. However, prolonged irrigation would have a negative impact due to nutrients runoff on both corn and soybean yields compared to rainfed condition. Decision tree analysis indicated that corn and soybean yields are most influenced by soil moisture, temperature, and precipitation as well as the water management practice used (i.e., rainfed or irrigated). The computed values from the SWAT modeling can be used as guidelines for water resource managers in this watershed to plan for projected water shortages and manage crop yields based on projected climate change conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Roman Corobov ◽  
Igor Sîrodoev ◽  
Sonja Koeppel ◽  
Nickolai Denisov ◽  
Ghennadi Sîrodoev

Vulnerability to climate change of the Moldavian part of the Dniester river was assessed as the function of exposure, sensitivity, and adaptive capacity of its basin’s natural and socioeconomic systems. As a spatial “scale” of the assessment, Moldova’s administrative-territorial units (ATUs) were selected. The exposure assessment was based on the climatic analysis of baseline (1971–2000) temperature and precipitation and projections of their changes in 2021–2050, separately for cold and warm periods. The sensitivity assessment included physiographical and socioeconomic characteristics, described by a set of specific indicators. The adaptive capacity was expressed by general economic and agricultural indicators, taking into consideration the medical provision and housing conditions. Through a ranking approach, the relative vulnerability of each ATU was calculated by summing its sensitivity and adaptive capacity ranks; the latter were obtained as combinations of their primary indicator ranks, arranged in an increasing and decreasing order, respectively. Due to lack of sound knowledge on these components' importance in overall assessment of vulnerability, their weights were taken as conventionally equal. Mapping of vulnerability revealed that ATUs neighboring to municipalities are the most vulnerable and need special attention in climate change adaptation. The basin’s “hotspots” were discussed with public participation.


Author(s):  
Laura Pereira

Confidence in the projected impacts of climate change on agricultural systems has increased substantially since the first Intergovernmental Panel on Climate Change (IPCC) reports. In Africa, much work has gone into downscaling global climate models to understand regional impacts, but there remains a dearth of local level understanding of impacts and communities’ capacity to adapt. It is well understood that Africa is vulnerable to climate change, not only because of its high exposure to climate change, but also because many African communities lack the capacity to respond or adapt to the impacts of climate change. Warming trends have already become evident across the continent, and it is likely that the continent’s 2000 mean annual temperature change will exceed +2°C by 2100. Added to this warming trend, changes in precipitation patterns are also of concern: Even if rainfall remains constant, due to increasing temperatures, existing water stress will be amplified, putting even more pressure on agricultural systems, especially in semiarid areas. In general, high temperatures and changes in rainfall patterns are likely to reduce cereal crop productivity, and new evidence is emerging that high-value perennial crops will also be negatively impacted by rising temperatures. Pressures from pests, weeds, and diseases are also expected to increase, with detrimental effects on crops and livestock. Much of African agriculture’s vulnerability to climate change lies in the fact that its agricultural systems remain largely rain-fed and underdeveloped, as the majority of Africa’s farmers are small-scale farmers with few financial resources, limited access to infrastructure, and disparate access to information. At the same time, as these systems are highly reliant on their environment, and farmers are dependent on farming for their livelihoods, their diversity, context specificity, and the existence of generations of traditional knowledge offer elements of resilience in the face of climate change. Overall, however, the combination of climatic and nonclimatic drivers and stressors will exacerbate the vulnerability of Africa’s agricultural systems to climate change, but the impacts will not be universally felt. Climate change will impact farmers and their agricultural systems in different ways, and adapting to these impacts will need to be context-specific. Current adaptation efforts on the continent are increasing across the continent, but it is expected that in the long term these will be insufficient in enabling communities to cope with the changes due to longer-term climate change. African famers are increasingly adopting a variety of conservation and agroecological practices such as agroforestry, contouring, terracing, mulching, and no-till. These practices have the twin benefits of lowering carbon emissions while adapting to climate change as well as broadening the sources of livelihoods for poor farmers, but there are constraints to their widespread adoption. These challenges vary from insecure land tenure to difficulties with knowledge-sharing. While African agriculture faces exposure to climate change as well as broader socioeconomic and political challenges, many of its diverse agricultural systems remain resilient. As the continent with the highest population growth rate, rapid urbanization trends, and rising GDP in many countries, Africa’s agricultural systems will need to become adaptive to more than just climate change as the uncertainties of the 21st century unfold.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Zhenchun Hao ◽  
Qin Ju ◽  
Weijuan Jiang ◽  
Changjun Zhu

The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4) presents twenty-two global climate models (GCMs). In this paper, we evaluate the ability of 22 GCMs to reproduce temperature and precipitation over the Tibetan Plateau by comparing with ground observations for 1961~1900. The results suggest that all the GCMs underestimate surface air temperature and most models overestimate precipitation in most regions on the Tibetan Plateau. Only a few models (each 5 models for precipitation and temperature) appear roughly consistent with the observations in annual temperature and precipitation variations. Comparatively, GFCM21 and CGMR are able to better reproduce the observed annual temperature and precipitation variability over the Tibetan Plateau. Although the scenarios predicted by the GCMs vary greatly, all the models predict consistently increasing trends in temperature and precipitation in most regions in the Tibetan Plateau in the next 90 years. The results suggest that the temperature and precipitation will both increase in all three periods under different scenarios, with scenario A1 increasing the most and scenario A1B increasing the least.


Ecohydrology ◽  
2015 ◽  
Vol 9 (3) ◽  
pp. 514-528 ◽  
Author(s):  
José M. Santiago ◽  
Diego García de Jalón ◽  
Carlos Alonso ◽  
Joaquín Solana ◽  
Jaime Ribalaygua ◽  
...  

Author(s):  
Michael K. Young ◽  
Daniel J. Isaak ◽  
Scott Spaulding ◽  
Cameron A. Thomas ◽  
Scott A. Barndt ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 299
Author(s):  
Yanjuan Wu ◽  
Gang Luo ◽  
Cai Chen ◽  
Zheng Duan ◽  
Chao Gao

Amongst the impacts of climate change, those arising from extreme hydrological events are expected to cause the greatest impacts. To assess the changes in temperature and precipitation and their impacts on the discharge in the upper Yangtze Basin from pre-industrial to the end of 21st century, four hydrological models were integrated with four global climate models. Results indicated that mean discharge was simulated to increase slightly for all hydrological models forced by all global climate models during 1771–1800 and 1871–1900 relative to the 1971–2000 reference period, whereas the change directions in mean discharge were not consistent among the four global climate models during 2070–2099, with increases from HadGEM2-ES and MIROC5, and decreases from GFDL-ESM2M and IPSL-CM5A-LR. Additionally, our results indicated that decreases in precipitation may always result in the decrease in mean discharge, but increases in precipitation did not always lead to increases in discharge due to high temperature rise. The changes in extreme flood events with different return intervals were also explored. These extreme events were projected to become more intense and frequent in the future, which could have potential devastating impacts on the society and ecosystem in this region.


Sign in / Sign up

Export Citation Format

Share Document