Effects of Climate Change on Cold-Water Fish in the Northern Rockies

Author(s):  
Michael K. Young ◽  
Daniel J. Isaak ◽  
Scott Spaulding ◽  
Cameron A. Thomas ◽  
Scott A. Barndt ◽  
...  
Ecohydrology ◽  
2015 ◽  
Vol 9 (3) ◽  
pp. 514-528 ◽  
Author(s):  
José M. Santiago ◽  
Diego García de Jalón ◽  
Carlos Alonso ◽  
Joaquín Solana ◽  
Jaime Ribalaygua ◽  
...  

2017 ◽  
Vol 21 (8) ◽  
pp. 4073-4101 ◽  
Author(s):  
José María Santiago ◽  
Rafael Muñoz-Mas ◽  
Joaquín Solana-Gutiérrez ◽  
Diego García de Jalón ◽  
Carlos Alonso ◽  
...  

Abstract. Climate changes affect aquatic ecosystems by altering temperatures and precipitation patterns, and the rear edges of the distributions of cold-water species are especially sensitive to these effects. The main goal of this study was to predict in detail how changes in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (the brown trout, Salmo trutta), and the synergistic relationships among these variables at the rear edge of the natural distribution of brown trout. Thirty-one sites in 14 mountain rivers and streams were studied in central Spain. Models of streamflow were built for several of these sites using M5 model trees, and a non-linear regression method was used to estimate stream temperatures. Nine global climate models simulations for Representative Concentration Pathways RCP4.5 and RCP8.5 scenarios were downscaled to the local level. Significant reductions in streamflow were predicted to occur in all of the basins (max. −49 %) by the year 2099, and seasonal differences were noted between the basins. The stream temperature models showed relationships between the model parameters, geology and hydrologic responses. Temperature was sensitive to streamflow in one set of streams, and summer reductions in streamflow contributed to additional stream temperature increases (max. 3.6 °C), although the sites that are most dependent on deep aquifers will likely resist warming to a greater degree. The predicted increases in water temperatures were as high as 4.0 °C. Temperature and streamflow changes will cause a shift in the rear edge of the distribution of this species. However, geology will affect the extent of this shift. Approaches like the one used herein have proven to be useful in planning the prevention and mitigation of the negative effects of climate change by differentiating areas based on the risk level and viability of fish populations.


2017 ◽  
Author(s):  
José M. Santiago ◽  
Rafael Muñoz-Mas ◽  
Joaquín Solana ◽  
Diego García de Jalón ◽  
Carlos Alonso ◽  
...  

Abstract. Climate change affects aquatic ecosystems altering temperature and precipitation patterns, and the rear edge of the distribution of cold-water species is especially sensitive to them. The main goal was to predict in detail how change in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (brown trout, Salmo trutta Linnaeus 1758), and their synergistic relationships at the rear edge of its natural distribution. 31 sites in 14 mountain rivers and streams were studied in Central Spain. Models at several sites were built using regression trees for streamflow, and a non-linear regression method for stream temperature. Nine global climate models simulations for the RCP4.5 and RCP8.5 (Representative Concentration Pathways) scenarios were downscaled to a local level. Significant streamflow reductions were predicted in all basins (max. −49 %) by the year 2099, showing seasonal differences between them. The stream temperature models showed relationships between models parameters, geology and hydrologic responses. Temperature was sensitive to the streamflow in one set of streams, and summer reductions contributed to additional stream temperature increases (max. 3.6 °C), although the most deep-aquifer dependent sites better resisted warming. The predicted increase in water temperature reached up to 4.0 °C. Temperature and streamflow changes will cause a shift of the rear edge of the species distribution. However, geology conditioned the extent of this shift. Approaches like these should be useful in planning the prevention and mitigation of negative effects of climate change by differentiating areas based on the risk level and viability of fish populations.


2013 ◽  
Vol 53 (1) ◽  
pp. 362-372 ◽  
Author(s):  
Emma Piacentini ◽  
Lidietta Giorno ◽  
Marijana M. Dragosavac ◽  
Goran T. Vladisavljević ◽  
Richard G. Holdich

2021 ◽  
Vol 757 ◽  
pp. 143896
Author(s):  
Elin Sørhus ◽  
Carey E. Donald ◽  
Denis da Silva ◽  
Anders Thorsen ◽  
Ørjan Karlsen ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. e0163902 ◽  
Author(s):  
Hee Jeong Yoon ◽  
Su Ryon Shin ◽  
Jae Min Cha ◽  
Soo-Hong Lee ◽  
Jin-Hoi Kim ◽  
...  

1973 ◽  
Vol 133 (4) ◽  
pp. 735-738 ◽  
Author(s):  
Ian A. Johnston ◽  
Neil Frearson ◽  
Geoffrey Goldspink

1. Myofibrillar adenosine triphosphatase (ATPase) activities were measured for white myotomal muscle of 19 species of fish. 2. The activity was measured at different temperatures and after periods of preincubation at 37°C. 3. The inactivation half-life at 37°C depended on environmental temperature, increasing as the temperature increased. 4. Cold-water fish had higher myofibrillar adenosine triphosphatase activity at low temperatures than had warm-water fish. 5. The significance of these results is discussed.


2018 ◽  
Author(s):  
Yunqian Qiao ◽  
Jiao Wang ◽  
He Wang ◽  
Baozhong Chai ◽  
Chufeng Rao ◽  
...  

AbstractAeromonas salmonicidasubsp.salmonicida(A.s.s) is a major pathogen affecting fisheries worldwide. It is a well-known member of the pigmentedAeromonasspecies, which produces melanin at ≤ 22 °C. However, melanogenesis decreases as the culture temperature increases and is completely suppressed at 30-35 °C while bacterial growth is not affected. The mechanism and biological significance of this temperature-dependent melanogenesis are not clear. Heterologous expression of anA.s.s.4-hydroxyphenylpyruvate dioxygenase (HppD), the most crucial enzyme in the HGA-melanin synthesis pathway, results in thermosensitive pigmentation inEscherichia coli, suggesting that HppD plays a key role in this process. In the current study, we demonstrated that the extreme thermolability of HppD is responsible for the temperature-dependent melanization ofA.s.s.Substitutions in three residues, Ser18, Pro103, or Leu119 of HppD fromA.s.sincreases the thermolability of this enzyme and results in temperature-independent melanogenesis. Moreover, replacing the corresponding residues of HppD fromAeromonasmedia strain WS, which forms pigment independent of temperature, with those ofA.s.sHppD leads to thermosensitive melanogenesis. Structural analysis suggested that mutations at these sites, especially at position P103, can strengthen the secondary structure of HppD and greatly improve its thermal stability. In addition, we found that HppD sequences of allA.s.sisolates are identical and that two of the three residues are completely conserved withinA.s.sisolates, which clearly distinguishes these from otherAeromonasstrains. We suggest that this property represents an adaptive strategy to the psychrophilic lifestyle ofA.s.s.ImportanceAeromonas salmonicidasubsp.salmonicida(A.s.s) is the causative agent of furunculosis, a bacterial septicemia of cold water fish of theSalmonidaefamily. As it has a well-defined host range,A.s.shas become an ideal model to investigate the co-evolution of host and pathogen. For many pathogens, melanin production is associated with virulence. Although other species ofAeromonascan produce melanin,A.s.sis the only member of this genus that has been reported to exhibit temperature-dependent melanization. Here we demonstrate that thermosensitive melanogenesis inA.s.sstrains is due to the thermolability of 4-hydroxyphenylpyruvate dioxygenase (HppD). The strictly conservedhppDsequences amongA.s.sand the exclusive thermosensitive pigmentation of these strains might provide insight into the role of melanin in the adaptation to a particular host, and offer a novel molecular marker to readily differentiateA.s.sstrains from otherA. salmonicidasubspecies andAeromonasspecies.


Sign in / Sign up

Export Citation Format

Share Document