scholarly journals Global Downscaling of Remotely-Sensed Soil Moisture using Neural Networks

Author(s):  
Seyed Hamed Alemohammad ◽  
Jana Kolassa ◽  
Catherine Prigent ◽  
Filipe Aires ◽  
Pierre Gentine

Abstract. Characterizing soil moisture at spatio-temporal scales relevant to land surface processes (i.e. of the order of a kilometer) is necessary in order to quantify its role in regional feedbacks between land surface and the atmospheric boundary layer. Moreover, several applications such as agricultural management can benefit from soil moisture information at fine spatial scales. Soil moisture estimates from current satellite missions have a reasonably good temporal revisit over the globe (2–3 days repeat time); however, their finest spatial resolution is 9 km. NASA's Soil Moisture Active Passive (SMAP) satellite estimates soil moisture at two different spatial scales of 36 km and 9 km since April 2015. In this study, we develop a neural networks-based downscaling algorithm using SMAP observations and disaggregate soil moisture to 2.25 km spatial resolution. Our approach uses mean monthly Normalized Differenced Vegetation Index (NDVI) as an ancillary data to quantify sub-pixel heterogeneity of soil moisture. Evaluation of the downscaled soil moisture estimates against in situ observations shows that their accuracy is better than or equal to the SMAP 9 km soil moisture estimates.

2018 ◽  
Vol 22 (10) ◽  
pp. 5341-5356 ◽  
Author(s):  
Seyed Hamed Alemohammad ◽  
Jana Kolassa ◽  
Catherine Prigent ◽  
Filipe Aires ◽  
Pierre Gentine

Abstract. Characterizing soil moisture at spatiotemporal scales relevant to land surface processes (i.e., of the order of 1 km) is necessary in order to quantify its role in regional feedbacks between the land surface and the atmospheric boundary layer. Moreover, several applications such as agricultural management can benefit from soil moisture information at fine spatial scales. Soil moisture estimates from current satellite missions have a reasonably good temporal revisit over the globe (2–3-day repeat time); however, their finest spatial resolution is 9 km. NASA's Soil Moisture Active Passive (SMAP) satellite has estimated soil moisture at two different spatial scales of 36 and 9 km since April 2015. In this study, we develop a neural-network-based downscaling algorithm using SMAP observations and disaggregate soil moisture to 2.25 km spatial resolution. Our approach uses the mean monthly Normalized Differenced Vegetation Index (NDVI) as ancillary data to quantify the subpixel heterogeneity of soil moisture. Evaluation of the downscaled soil moisture estimates against in situ observations shows that their accuracy is better than or equal to the SMAP 9 km soil moisture estimates.


2019 ◽  
Vol 11 (16) ◽  
pp. 1863 ◽  
Author(s):  
Nitu Ojha ◽  
Olivier Merlin ◽  
Beatriz Molero ◽  
Christophe Suere ◽  
Luis Olivera-Guerra ◽  
...  

Global soil moisture (SM) products are currently available from passive microwave sensors at typically 40 km spatial resolution. Although recent efforts have been made to produce 1 km resolution data from the disaggregation of coarse scale observations, the targeted resolution of available SM data is still far from the requirements of fine-scale hydrological and agricultural studies. To fill the gap, a new disaggregation scheme of Soil Moisture Active and Passive (SMAP) data is proposed at 100 m resolution by using the disaggregation based on physical and theoretical scale change (DISPATCH) algorithm. The main objectives of this paper is (i) to implement DISPATCH algorithm at 100 m resolution using SMAP SM and Landsat land surface temperature and vegetation index data and (ii) to investigate the usefulness of an intermediate spatial resolution (ISR) between the SMAP 36 km resolution and the targeted 100 m resolution. The sequential disaggregation approach from 36 km to ISR (ranging from 1 km to 30 km) and from ISR to 100 m resolution is evaluated over 22 irrigated field crops in central Morocco using in-situ SM measurements collected from January to May 2016. The lowest root mean square difference (RMSD) between the 100 m resolution disaggregated and in-situ SM is obtained when the ISR is around 10 km. Therefore, the two-step disaggregation is more efficient than the direct disaggregation from SMAP to 100 m resolution. Moreover, we propose a moving average window algorithm to increase the accuracy in the 100 m resolution SM as well as to reduce the low-resolution boxy artifacts on disaggregated images. The correlation coefficient between 100 m resolution disaggregated and in situ SM ranges between 0.5–0.9 for four out of the six extensive sampling dates. This methodology relies solely on remote sensing data and can be easily implemented to monitor SM at a high spatial resolution over irrigated regions.


2021 ◽  
Vol 14 (1) ◽  
pp. 167
Author(s):  
Giovanni Paolini ◽  
Maria Jose Escorihuela ◽  
Joaquim Bellvert ◽  
Olivier Merlin

This paper introduces a modified version of the DisPATCh (Disaggregation based on Physical And Theoretical scale Change) algorithm to disaggregate an SMAP surface soil moisture (SSM) product at a 20 m spatial resolution, through the use of sharpened Sentinel-3 land surface temperature (LST) data. Using sharpened LST as a high resolution proxy of SSM is a novel approach that needs to be validated and can be employed in a variety of applications that currently lack in a product with a similar high spatio-temporal resolution. The proposed high resolution SSM product was validated against available in situ data for two different fields, and it was also compared with two coarser DisPATCh products produced, disaggregating SMAP through the use of an LST at 1 km from Sentinel-3 and MODIS. From the correlation between in situ data and disaggregated SSM products, a general improvement was found in terms of Pearson’s correlation coefficient (R) for the proposed high resolution product with respect to the two products at 1 km. For the first field analyzed, R was equal to 0.47 when considering the 20 m product, an improvement compared to the 0.28 and 0.39 for the 1 km products. The improvement was especially noticeable during the summer season, in which it was only possible to successfully capture field-specific irrigation practices at the 20 m resolution. For the second field, R was 0.31 for the 20 m product, also an improvement compared to the 0.21 and 0.23 for the 1 km product. Additionally, the new product was able to depict SSM spatial variability at a sub-field scale and a validation analysis is also proposed at this scale. The main advantage of the proposed product is its very high spatio-temporal resolution, which opens up new opportunities to apply remotely sensed SSM data in disciplines that require fine spatial scales, such as agriculture and water management.


2020 ◽  
Author(s):  
Amol Patil ◽  
Benjamin Fersch ◽  
Harrie-Jan Hendricks-Franssen ◽  
Harald Kunstmann

<p>Soil moisture is a key variable in atmospheric modelling to resolve the partitioning of net radiation into sensible and latent heat fluxes. Therefore, high resolution spatio-temporal soil moisture estimation is getting growing attention in this decade. The recent developments to observe soil moisture at field scale (170 to 250 m spatial resolution) using Cosmic Ray Neutron Sensing (CRNS) technique has created new opportunities to better resolve land surface atmospheric interactions; however, many challenges remain such as spatial resolution mismatch and estimation uncertainties. Our study couples the Noah-MP land surface model to the Data Assimilation Research Testbed (DART) for assimilating CRN intensities to update model soil moisture. For evaluation, the spatially distributed Noah-MP was set up to simulate the land surface variables at 1 km horizontal resolution for the Rott and Ammer catchments in southern Germany. The study site comprises the TERENO-preAlpine observatory with five CRNS stations and additional CRNS measurements for summer 2019 operated by our Cosmic Sense research group. We adjusted the soil parametrization in Noah-MP to allow the usage of EU soil data along with Mualem-van Genuchten soil hydraulic parameters. We use independent observations from extensive soil moisture sensor network (SoilNet) within the vicinity of CRNS sensors for validation. Our detailed synthetic and real data experiments are evaluated for the analysis of the spatio-temporal changes in updated root zone soil moisture and for implications on the energy balance component of Noah-MP. Furthermore, we present possibilities to estimate root zone soil parameters within the data assimilation framework to enhance standalone model performance.</p>


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8371
Author(s):  
Irina Ontel ◽  
Anisoara Irimescu ◽  
George Boldeanu ◽  
Denis Mihailescu ◽  
Claudiu-Valeriu Angearu ◽  
...  

This paper will assess the sensitivity of soil moisture anomaly (SMA) obtained from the Soil water index (SWI) product Metop ASCAT, to identify drought in Romania. The SWI data were converted from relative values (%) to absolute values (m3 m−3) using the soil porosity method. The conversion results (SM) were validated using soil moisture in situ measurements from ISMN at 5 cm depths (2015–2020). The SMA was computed based on a 10 day SWI product, between 2007 and 2020. The analysis was performed for the depths of 5 cm (near surface), 40 cm (sub surface), and 100 cm (root zone). The standardized precipitation index (SPI), land surface temperature anomaly (LST anomaly), and normalized difference vegetation index anomaly (NDVI anomaly) were computed in order to compare the extent and intensity of drought events. The best correlations between SM and in situ measurements are for the stations located in the Getic Plateau (Bacles (r = 0.797) and Slatina (r = 0.672)), in the Western Plain (Oradea (r = 0.693)), and in the Moldavian Plateau (Iasi (r = 0.608)). The RMSE were between 0.05 and 0.184. Furthermore, the correlations between the SMA and SPI, the LST anomaly, and the NDVI anomaly were significantly registered in the second half of the warm season (July–September). Due to the predominantly agricultural use of the land, the results can be useful for the management of water resources and irrigation in regions frequently affected by drought.


2021 ◽  
Vol 9 ◽  
Author(s):  
Nitu Ojha ◽  
Olivier Merlin ◽  
Christophe Suere ◽  
Maria José Escorihuela

DISPATCH is a disaggregation algorithm of the low-resolution soil moisture (SM) estimates derived from passive microwave observations. It provides disaggregated SM data at typically 1 km resolution by using the soil evaporative efficiency (SEE) estimated from optical/thermal data collected around solar noon. DISPATCH is based on the relationship between the evapo-transpiration rate and the surface SM under non-energy-limited conditions and hence is well adapted for semi-arid regions with generally low cloud cover and sparse vegetation. The objective of this paper is to extend the spatio-temporal coverage of DISPATCH data by 1) including more densely vegetated areas and 2) assessing the usefulness of thermal data collected earlier in the morning. Especially, we evaluate the performance of the Temperature Vegetation Dryness Index (TVDI) instead of SEE in the DISPATCH algorithm over vegetated areas (called vegetation-extended DISPATCH) and we quantify the increase in coverage using Sentinel-3 (overpass at around 09:30 am) instead of MODIS (overpass at around 10:30 am and 1:30 pm for Terra and Aqua, respectively) data. In this study, DISPATCH is applied to 36 km resolution Soil Moisture Active and Passive SM data over three 50 km by 50 km areas in Spain and France to assess the effectiveness of the approach over temperate and semi-arid regions. The use of TVDI within DISPATCH increases the coverage of disaggregated images by 9 and 14% over the temperate and semi-arid sites, respectively. Moreover, including the vegetated pixels in the validation areas increases the overall correlation between satellite and in situ SM from 0.36 to 0.43 and from 0.41 to 0.79 for the temperate and semi-arid regions, respectively. The use of Sentinel-3 can increase the spatio-temporal coverage by up to 44% over the considered MODIS tile, while the overlapping disaggregated data sets derived from Sentinel-3 and MODIS land surface temperature data are strongly correlated (around 0.7). Additionally, the correlation between satellite and in situ SM is significantly better for DISPATCH (0.39–0.80) than for the Copernicus Sentinel-1-based (−0.03 to 0.69) and SMAP/S1 (0.37–0.74) product over the three studies (temperate and semi-arid) areas, with an increase in yearly valid retrievals for the vegetation-extended DISPATCH algorithm.


2018 ◽  
Vol 22 (15) ◽  
pp. 1-19 ◽  
Author(s):  
Xiaolei Fu ◽  
Lifeng Luo ◽  
Ming Pan ◽  
Zhongbo Yu ◽  
Ying Tang ◽  
...  

Abstract Better quantification of the spatiotemporal distribution of soil moisture across different spatial scales contributes significantly to the understanding of land surface processes on the Earth as an integrated system. While observational data for root-zone soil moisture (RZSM) often have sparse spatial coverage, model-simulated soil moisture may provide a useful alternative. TOPMODEL-Based Land Surface–Atmosphere Transfer Scheme (TOPLATS) has been widely studied and actively modified in recent years, while a detailed regional application with evaluation currently is still lacking. Thus, TOPLATS was used to generate high-resolution (30 arc s) RZSM based on coarse-scale (0.125°) forcing data over part of the Arkansas–Red River basin. First, the simulated RZSM was resampled to coarse scale to compare with the results of Mosaic, Noah, and VIC from NLDAS. Second, TOPLATS performance was assessed based on the spatial absolute difference among the models. The comparison shows that TOPLATS performance is similar to VIC, but different from Mosaic and Noah. Last, the simulated RZSM was compared with in situ observations of 16 stations in the study area. The results suggest that the simulated spatial distribution of RZSM is largely consistent with the distribution of topographic index (TI) in most instances, as topography was traditionally considered a major, but not the only, factor in horizontal redistribution of soil moisture. In addition, the finer-resolution RZSM can reflect the in situ soil moisture change at most local sites to a certain degree. The evaluation confirms that TOPLATS is a useful tool to estimate high-resolution soil moisture and has great potential to provide regional soil moisture estimates.


2013 ◽  
Vol 726-731 ◽  
pp. 4572-4576 ◽  
Author(s):  
Yu Qin Liu ◽  
Jin Ming Sha ◽  
De Sheng Wang

Soil moisture is of great significance for regional resources and environments. The combination of land surface temperature (Ts) and vegetation index (VI) is appropriate for monitoring the regional surface soil moisture status. In this study, we employed HJ-1B CCD/IRS images,DEMand land use types to obtain the information about soil moisture for Minhou county in FuZhou. Firstly,TVDIreflected the soil moisture status was analyzed with in-situ soil moisture measurements based on two kinds of different vegetation indexes (NDVI/EVI). Secondly, the relationship betweenTVDIandDEMwas analyzed. Finally, the soil moisture status of each land use type was explored combined with the main land use types of study area. Research findings indicate that: (1)TVDIcan effectively reflect the spatial pattern of soil moisture andTs/EVIhas a higher accuracy thanTs/NDVI; (2) the spatial distribution of soil moisture is obviously affected by the altitude; (3) there exists correlationship between soil moisture and land use types in study area.


2020 ◽  
Author(s):  
Yanchen Bo

<p>High-level satellite remote sensing products of Earth surface play an irreplaceable role in global climate change, hydrological cycle modeling and water resources management, environment monitoring and assessment. Earth surface high-level remote sensing products released by NASA, ESA and other agencies are routinely derived from any single remote sensor. Due to the cloud contamination and limitations of retrieval algorithms, the remote sensing products derived from single remote senor are suspected to the incompleteness, low accuracy and less consistency in space and time. Some land surface remote sensing products, such as soil moisture products derived from passive microwave remote sensing data have too coarse spatial resolution to be applied at local scale. Fusion and downscaling is an effective way of improving the quality of satellite remote sensing products.</p><p>We developed a Bayesian spatio-temporal geostatistics-based framework for multiple remote sensing products fusion and downscaling. Compared to the existing methods, the presented method has 2 major advantages. The first is that the method was developed in the Bayesian paradigm, so the uncertainties of the multiple remote sensing products being fused or downscaled could be quantified and explicitly expressed in the fusion and downscaling algorithms. The second advantage is that the spatio-temporal autocorrelation is exploited in the fusion approach so that more complete products could be produced by geostatistical estimation.</p><p>This method has been applied to the fusion of multiple satellite AOD products, multiple satellite SST products, multiple satellite LST products and downscaling of 25 km spatial resolution soil moisture products. The results were evaluated in both spatio-temporal completeness and accuracy.</p>


2018 ◽  
Author(s):  
Samiro Khodayar ◽  
Amparo Coll ◽  
Ernesto Lopez-Baeza

Abstract. This study uses the synergy of multiresolution soil moisture (SM) satellite estimates from the Soil Moisture Ocean Salinity (SMOS) mission, a dense network of ground-based SM measurements, and a Soil Vegetation Atmosphere Transfer (SVAT) model, SURFEX (Externalized Surface) – module ISBA (Interactions between Soil-Biosphere-Atmosphere), to examine, i) the comparison and suitability of different operational SMOS SM products to provide realistic information on the water content of the soil as well as the added value of the newly released SMOS Level 4 3.0 all weather disaggregated ~ 1 km SM (SMOS_L43.0), and ii) its potential impact for improving uncertainty associated to SM initialization in land surface modelling. Three different data products from SMOS-L3 (~ 25 km), L2 (~ 15 km), and disaggregated L4 3.0 (~ 1 km) are investigated. In situ SM observations over the Valencia Anchor Station (VAS; SMOS Calibration/Validation (Cal/Val) site in Europe) are used for comparison. The SURFEX-ISBA model is used to simulate point-scale surface SM (SSM) and, in combination with high-quality atmospheric information data, namely ECMWF and the SAFRAN meteorological analysis system, to obtain a representative SSM mapping over the VAS. The sensitivity to SSM initialization, particularly to realistic initialization with SMOS_L43.0 to simulate the spatial and temporal distribution of SSM is assessed. Results demonstrate: (a) all SMOS products correctly capture the temporal patterns, but, the spatial patterns are not accurately reproduced by the coarser resolutions probably in relation to the contrast with point-scale in situ measurements. (b) The potential of SMOS-L43.0 product is pointed out to adequately characterize SM spatio-temporal variability reflecting patterns consistent with intensive point scale SSM samples on a daily time scale. The restricted temporal availability of this product dictated by the revisit period of the SMOS satellite compromises the averaged SSM representation for longer periods than a day. (c) A seasonal analysis points out improved consistency during December-January-February and September-October-November in contrast to significantly worse correlations in March-April-May (in relation to the growing vegetation) and June-July-August (in relation to low SSM values


Sign in / Sign up

Export Citation Format

Share Document