scholarly journals Towards Effective Drought Monitoring in the Middle East and North Africa (MENA) Region: Implications from Assimilating Leaf Area Index and Soil Moisture into the Noah-MP Land Surface Model for Morocco

2021 ◽  
Author(s):  
Wanshu Nie ◽  
Sujay V. Kumar ◽  
Kristi R. Arsenault ◽  
Christa D. Peters-Lidard ◽  
Iliana E. Mladenova ◽  
...  

Abstract. The Middle East and North Africa (MENA) region has experienced more frequent and severe drought events in recent decades, leading to increasingly pressing concerns over already strained food and water security. An effective drought monitoring and early warning system is thus critical to support risk mitigation and management by countries in the region. Here we investigate the potential for assimilation of leaf area index (LAI) and soil moisture observations to improve representation of the overall hydrological and carbon cycles and drought by an advanced land surface model. The results reveal that assimilating soil moisture does not meaningfully improve model representation of the hydrological and biospheric processes for this region, but rather it degrades simulation of interannual variation of evapotranspiration (ET) and carbon fluxes, mainly due to model weaknesses in representing dynamic phenology. However, assimilating LAI leads to greater improvement, especially for transpiration and carbon fluxes, by constraining the timing of simulated vegetation growth response to evolving climate conditions. LAI assimilation also helps to correct for the erroneous interaction between the dynamic phenology and irrigation during summertime, effectively reducing a large positive bias in ET and carbon fluxes. Independently assimilating LAI or soil moisture alters the categorization of drought, with the differences being greater for more severe drought categories. We highlight the vegetation representation in response to changing land use and hydroclimate as one of the key processes to be captured for building a successful drought early warning system for the MENA region.

2011 ◽  
Vol 42 (2-3) ◽  
pp. 95-112 ◽  
Author(s):  
Venkat Lakshmi ◽  
Seungbum Hong ◽  
Eric E. Small ◽  
Fei Chen

The importance of land surface processes has long been recognized in hydrometeorology and ecology for they play a key role in climate and weather modeling. However, their quantification has been challenging due to the complex nature of the land surface amongst other reasons. One of the difficult parts in the quantification is the effect of vegetation that are related to land surface processes such as soil moisture variation and to atmospheric conditions such as radiation. This study addresses various relational investigations among vegetation properties such as Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), surface temperature (TSK), and vegetation water content (VegWC) derived from satellite sensors such as Moderate Resolution Imaging Spectroradiometer (MODIS) and EOS Advanced Microwave Scanning Radiometer (AMSR-E). The study provides general information about a physiological behavior of vegetation for various environmental conditions. Second, using a coupled mesoscale/land surface model, we examine the effects of vegetation and its relationship with soil moisture on the simulated land–atmospheric interactions through the model sensitivity tests. The Weather Research and Forecasting (WRF) model was selected for this study, and the Noah land surface model (Noah LSM) implemented in the WRF model was used for the model coupled system. This coupled model was tested through two parameterization methods for vegetation fraction using MODIS data and through model initialization of soil moisture from High Resolution Land Data Assimilation System (HRLDAS). Finally, this study evaluates the model improvements for each simulation method.


2017 ◽  
Vol 21 (4) ◽  
pp. 2015-2033 ◽  
Author(s):  
David Fairbairn ◽  
Alina Lavinia Barbu ◽  
Adrien Napoly ◽  
Clément Albergel ◽  
Jean-François Mahfouf ◽  
...  

Abstract. This study evaluates the impact of assimilating surface soil moisture (SSM) and leaf area index (LAI) observations into a land surface model using the SAFRAN–ISBA–MODCOU (SIM) hydrological suite. SIM consists of three stages: (1) an atmospheric reanalysis (SAFRAN) over France, which forces (2) the three-layer ISBA land surface model, which then provides drainage and runoff inputs to (3) the MODCOU hydro-geological model. The drainage and runoff outputs from ISBA are validated by comparing the simulated river discharge from MODCOU with over 500 river-gauge observations over France and with a subset of stations with low-anthropogenic influence, over several years. This study makes use of the A-gs version of ISBA that allows for physiological processes. The atmospheric forcing for the ISBA-A-gs model underestimates direct shortwave and long-wave radiation by approximately 5 % averaged over France. The ISBA-A-gs model also substantially underestimates the grassland LAI compared with satellite retrievals during winter dormancy. These differences result in an underestimation (overestimation) of evapotranspiration (drainage and runoff). The excess runoff flowing into the rivers and aquifers contributes to an overestimation of the SIM river discharge. Two experiments attempted to resolve these problems: (i) a correction of the minimum LAI model parameter for grasslands and (ii) a bias-correction of the model radiative forcing. Two data assimilation experiments were also performed, which are designed to correct random errors in the initial conditions: (iii) the assimilation of LAI observations and (iv) the assimilation of SSM and LAI observations. The data assimilation for (iii) and (iv) was done with a simplified extended Kalman filter (SEKF), which uses finite differences in the observation operator Jacobians to relate the observations to the model variables. Experiments (i) and (ii) improved the median SIM Nash scores by about 9 % and 18 % respectively. Experiment (iii) reduced the LAI phase errors in ISBA-A-gs but had little impact on the discharge Nash efficiency of SIM. In contrast, experiment (iv) resulted in spurious increases in drainage and runoff, which degraded the median discharge Nash efficiency by about 7 %. The poor performance of the SEKF originates from the observation operator Jacobians. These Jacobians are dampened when the soil is saturated and when the vegetation is dormant, which leads to positive biases in drainage and/or runoff and to insufficient corrections during winter, respectively. Possible ways to improve the model are discussed, including a new multi-layer diffusion model and a more realistic response of photosynthesis to temperature in mountainous regions. The data assimilation should be advanced by accounting for model and forcing uncertainties.


2019 ◽  
Author(s):  
Xinxuan Zhang ◽  
Viviana Maggioni ◽  
Azbina Rahman ◽  
Paul Houser ◽  
Yuan Xue ◽  
...  

Abstract. Vegetation plays a fundamental role not only in the energy and carbon cycle, but also the global water balance by controlling surface evapotranspiration. Thus, accurately estimating vegetation-related variables has the potential to improve our understanding and estimation of the dynamic interactions between the water and carbon cycles. This study aims to assess to what extent a land surface model can be optimized through the assimilation of leaf area index (LAI) observations at the global scale. Two observing system simulation experiments (OSSEs) are performed to evaluate the efficiency of assimilating LAI through an Ensemble Kalman Filter (EnKF) to estimate LAI, evapotranspiration (ET), interception evaporation (CIE), canopy water storage (CWS), surface soil moisture (SSM), and terrestrial water storage (TWS). Results show that the LAI data assimilation framework effectively reduces errors in LAI simulations. LAI assimilation also improves the model estimates of all the water flux and storage variables considered in this study (ET, CIE, CWS, SSM, and TWS), even when the forcing precipitation is strongly positively biased (extremely wet condition). However, it tends to worsen some of the model estimated water-related variables (SSM and TWS) when the forcing precipitation is affected by a dry bias. This is attributed to the fact that the amount of water in the land surface model is conservative and the LAI assimilation introduces more vegetation, which requires more water than what available within the soil. Future work should investigate a multi-variate data assimilation system that concurrently merges both LAI and soil moisture (or TWS) observations.


2018 ◽  
Vol 22 (6) ◽  
pp. 3515-3532 ◽  
Author(s):  
Clement Albergel ◽  
Emanuel Dutra ◽  
Simon Munier ◽  
Jean-Christophe Calvet ◽  
Joaquin Munoz-Sabater ◽  
...  

Abstract. The European Centre for Medium-Range Weather Forecasts (ECMWF) recently released the first 7-year segment of its latest atmospheric reanalysis: ERA-5 over the period 2010–2016. ERA-5 has important changes relative to the former ERA-Interim atmospheric reanalysis including higher spatial and temporal resolutions as well as a more recent model and data assimilation system. ERA-5 is foreseen to replace ERA-Interim reanalysis and one of the main goals of this study is to assess whether ERA-5 can enhance the simulation performances with respect to ERA-Interim when it is used to force a land surface model (LSM). To that end, both ERA-5 and ERA-Interim are used to force the ISBA (Interactions between Soil, Biosphere, and Atmosphere) LSM fully coupled with the Total Runoff Integrating Pathways (TRIP) scheme adapted for the CNRM (Centre National de Recherches Météorologiques) continental hydrological system within the SURFEX (SURFace Externalisée) modelling platform of Météo-France. Simulations cover the 2010–2016 period at half a degree spatial resolution. The ERA-5 impact on ISBA LSM relative to ERA-Interim is evaluated using remote sensing and in situ observations covering a substantial part of the land surface storage and fluxes over the continental US domain. The remote sensing observations include (i) satellite-driven model estimates of land evapotranspiration, (ii) upscaled ground-based observations of gross primary production, (iii) satellite-derived estimates of surface soil moisture and (iv) satellite-derived estimates of leaf area index (LAI). The in situ observations cover (i) soil moisture, (ii) turbulent heat fluxes, (iii) river discharges and (iv) snow depth. ERA-5 leads to a consistent improvement over ERA-Interim as verified by the use of these eight independent observations of different land status and of the model simulations forced by ERA-5 when compared with ERA-Interim. This is particularly evident for the land surface variables linked to the terrestrial hydrological cycle, while variables linked to vegetation are less impacted. Results also indicate that while precipitation provides, to a large extent, improvements in surface fields (e.g. large improvement in the representation of river discharge and snow depth), the other atmospheric variables play an important role, contributing to the overall improvements. These results highlight the importance of enhanced meteorological forcing quality provided by the new ERA-5 reanalysis, which will pave the way for a new generation of land-surface developments and applications.


2019 ◽  
Vol 20 (7) ◽  
pp. 1359-1377 ◽  
Author(s):  
Sujay V. Kumar ◽  
David M. Mocko ◽  
Shugong Wang ◽  
Christa D. Peters-Lidard ◽  
Jordan Borak

Abstract Accurate representation of vegetation states is required for the modeling of terrestrial water–energy–carbon exchanges and the characterization of the impacts of natural and anthropogenic vegetation changes on the land surface. This study presents a comprehensive evaluation of the impact of assimilating remote sensing–based leaf area index (LAI) retrievals over the continental United States in the Noah-MP land surface model, during a time period of 2000–17. The results demonstrate that the assimilation has a beneficial impact on the simulation of key water budget terms, such as soil moisture, evapotranspiration, snow depth, terrestrial water storage, and streamflow, when compared with a large suite of reference datasets. In addition, the assimilation of LAI is also found to improve the carbon fluxes of gross primary production (GPP) and net ecosystem exchange (NEE). Most prominent improvements in the water and carbon variables are observed over the agricultural areas of the United States, where assimilation improves the representation of vegetation seasonality impacted by cropping schedules. The systematic, added improvements from assimilation in a configuration that employs high-quality boundary conditions highlight the significant utility of LAI data assimilation in capturing the impacts of vegetation changes.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 741
Author(s):  
Jason A. Otkin ◽  
Yafang Zhong ◽  
Eric D. Hunt ◽  
Jordan I. Christian ◽  
Jeffrey B. Basara ◽  
...  

Flash droughts are characterized by a period of rapid intensification over sub-seasonal time scales that culminates in the rapid emergence of new or worsening drought impacts. This study presents a new flash drought intensity index (FDII) that accounts for both the unusually rapid rate of drought intensification and its resultant severity. The FDII framework advances our ability to characterize flash drought because it provides a more complete measure of flash drought intensity than existing classification methods that only consider the rate of intensification. The FDII is computed using two terms measuring the maximum rate of intensification (FD_INT) and average drought severity (DRO_SEV). A climatological analysis using soil moisture data from the Noah land surface model from 1979–2017 revealed large regional and interannual variability in the spatial extent and intensity of soil moisture flash drought across the US. Overall, DRO_SEV is slightly larger over the western and central US where droughts tend to last longer and FD_INT is ~75% larger across the eastern US where soil moisture variability is greater. Comparison of the FD_INT and DRO_SEV terms showed that they are strongly correlated (r = 0.82 to 0.90) at regional scales, which indicates that the subsequent drought severity is closely related to the magnitude of the rapid intensification preceding it. Analysis of the 2012 US flash drought showed that the FDII depiction of severe drought conditions aligned more closely with regions containing poor crop conditions and large yield losses than that captured by the intensification rate component (FD_INT) alone.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3924 ◽  
Author(s):  
Toride ◽  
Sawada ◽  
Aida ◽  
Koike

The assimilation of radiometer and synthetic aperture radar (SAR) data is a promising recent technique to downscale soil moisture products, yet it requires land surface parameters and meteorological forcing data at a high spatial resolution. In this study, we propose a new downscaling approach, named integrated passive and active downscaling (I-PAD), to achieve high spatial and temporal resolution soil moisture datasets over regions without detailed soil data. The Advanced Microwave Scanning Radiometer (AMSR-E) and Phased Array-type L-band SAR (PALSAR) data are combined through a dual-pass land data assimilation system to obtain soil moisture at 1 km resolution. In the first step, fine resolution model parameters are optimized based on fine resolution PALSAR soil moisture and moderate-resolution imaging spectroradiometer (MODIS) leaf area index data, and coarse resolution AMSR-E brightness temperature data. Then, the 25 km AMSR-E observations are assimilated into a land surface model at 1 km resolution with a simple but computationally low-cost algorithm that considers the spatial resolution difference. Precipitation data are used as the only inputs from ground measurements. The evaluations at the two lightly vegetated sites in Mongolia and the Little Washita basin show that the time series of soil moisture are improved at most of the observation by the assimilation scheme. The analyses reveal that I-PAD can capture overall spatial trends of soil moisture within the coarse resolution radiometer footprints, demonstrating the potential of the algorithm to be applied over data-sparse regions. The capability and limitation are discussed based on the simple optimization and assimilation schemes used in the algorithm.


2019 ◽  
Vol 11 (23) ◽  
pp. 2842 ◽  
Author(s):  
Daniel Shamambo ◽  
Bertrand Bonan ◽  
Jean-Christophe Calvet ◽  
Clément Albergel ◽  
Sebastian Hahn

This paper investigates to what extent soil moisture and vegetation density information can be extracted from the Advanced Scatterometer (ASCAT) satellite-derived radar backscatter (σ°) in a data assimilation context. The impact of independent estimates of the surface soil moisture (SSM) and leaf area index (LAI) of diverse vegetation types on ASCAT σ° observations is simulated over southwestern France using the water cloud model (WCM). The LAI and SSM variables used by the WCM are derived from satellite observations and from the Interactions between Soil, Biosphere, and Atmosphere (ISBA) land surface model, respectively. They permit the calibration of the four parameters of the WCM describing static soil and vegetation characteristics. A seasonal analysis of the model scores shows that the WCM has shortcomings over karstic areas and wheat croplands. In the studied area, the Klaus windstorm in January 2009 damaged a large fraction of the Landes forest. The ability of the WCM to represent the impact of Klaus and to simulate ASCAT σ° observations in contrasting land-cover conditions is explored. The difference in σ° observations between the forest zone affected by the storm and the bordering agricultural areas presents a marked seasonality before the storm. The difference is small in the springtime (from March to May) and large in the autumn (September to November) and wintertime (December to February). After the storm, hardly any seasonality was observed over four years. This study shows that the WCM is able to simulate this extreme event. It is concluded that the WCM could be used as an observation operator for the assimilation of ASCAT σ° observations into the ISBA land surface model.


2018 ◽  
Author(s):  
Clement Albergel ◽  
Emanuel Dutra ◽  
Simon Munier ◽  
Jean-Christophe Calvet ◽  
Joaquin Munoz-Sabater ◽  
...  

Abstract. The European Centre for Medium Range Weather Forecast (ECMWF) recently released a first 7-year segment of its latest atmospheric reanalysis: ERA-5 over 2010–2016. ERA-5 important changes relative to ERA-Interim former atmospheric reanalysis include a higher spatial and temporal resolution as well as a more recent model and data assimilation system. ERA-5 is foreseen to replace ERA-Interim reanalysis and one of the main goals of this study is to assess whether ERA5 can enhance the simulation performances with respect to ERA-Interim when it is used to force a Land-Surface-Model (LSM). To that end, both ERA-5 and ERA-Interim are used to force the ISBA (Interactions between Soil, Biosphere, and Atmosphere) LSM fully coupled with the Total Runoff Integrating Pathways (TRIP) scheme adapted for the CNRM (Centre National de Recherches Météorologiques) continental hydrological system within the SURFEX (SURFace Externalisée) modelling platform of Météo-France. Simulations cover the 2010–2016 period at half a degree spatial resolution. ERA-5 impact on the ISBA LSM with respect to ERA-Interim is assessed over a data-rich area: North America. A comprehensive evaluation of ERA-5 impact is conducted using remote sensing and in-situ observations covering a substantial part of the land surface storage and fluxes. The remote sensing observations include: (i) satellite-driven model estimates of land evapotranspiration, (ii) upscaled ground-based observations of gross primary productivity, (iii) satellite derived estimates of surface soil moisture as well as (iv) satellite derived estimates of Leaf Area Index. The in-situ observations cover (i) soil moisture, (ii) turbulent heat fluxes and Net Ecosystem Exchange (NEE), (iii) river discharges and (iv) snow depth. ERA-5 leads to a consistent improvement over ERA-Interim as verified with the use of these 8 independent observations of different land status and of the model simulations forced by ERA-5 when compared with ERAInterim.. This is particularly evident for the land surface variables linked to the terrestrial hydrological cycle while variables linked to vegetation are less impacted. Results also indicate that while precipitation provides, to a large extend, improvements in surface fields (e.g. large improvement in the representation of river discharge and snow depth), the other atmospheric variables play an important role, contributing to the overall improvements. These results highlight the importance of enhanced meteorological forcing quality provided by the new ERA-5 reanalysis, which will pave the way for a new generation of land-surface developments and applications.


Sign in / Sign up

Export Citation Format

Share Document