scholarly journals A retrospective on hydrological modelling based on half a century with the HBV model

2021 ◽  
Author(s):  
Jan Seibert ◽  
Sten Bergström

Abstract. Hydrological models are important tools that are commonly used as the basis for water resource management planning. In the 1970s the development of several relatively simple models started and a number of so-called conceptual (or bucket-type) models were suggested. In these models, the complex and heterogeneous hydrological processes in a catchment are represented by a limited number of storage elements and fluxes between these. While a major motivation for such relatively simple models in the early days were computational limitations, today some of these models are still used frequently despite vastly increased computational opportunities. The HBV model, which was first applied about 50 years ago in Sweden, is a typical example of a conceptual catchment model and has gained large popularity over the past 50 years. During several model intercomparisons, the HBV model performed well despite (or because of) its relatively simple model structure. Here, the history of model development from thoughtful considerations of different model structures to modelling studies using hundreds of catchments and cloud computing facilities, is described. Furthermore, the wide range of model applications is discussed. The aim is to provide an understanding of the background of model development and a basis for addressing the balance between model complexity and data availability, which will face hydrologists also in the coming decades.

2013 ◽  
Vol 13 (3) ◽  
pp. 582-589 ◽  
Author(s):  
Gagik Badalians Gholikandi ◽  
Mandana Sadrzadeh ◽  
Shervin Jamshidi ◽  
Morteza Ebrahimi

Water is an essential component in the history of Iran. Due to the unfavorable distribution of surface water and the fluctuation of yearly seasonal streams, to fulfill water demands, ancient Iranians have tried to provide a better condition for utilization of water. Accordingly, elegant designs like qanats became an indispensable element of hydraulic systems, while institutional frameworks were innovated to be combined with in water resource management. Evidence shows that hydraulic structures and water establishments date back thousands of years known as cultural heritage. Besides, the ancient Iranians have realized the importance of an organization to supervise irrigation and water conveyance. Thus, during the Achaemenid and Sasanian Empires, water engineering was developed significantly through the whole territory. The governmental endorsements associated with contemporary engineered structures have made extensive innovations in water systems, such as canals, watermills, water treatment, water storage, piping and construction. The infrastructure fulfilled a wide range of necessities of a civilized country and assisted in achieving its golden era. Consequently, this paper is aimed at studying ancient water resource management and technological approaches in Iran.


2021 ◽  
Author(s):  
Giulia Bruno ◽  
Francesco Avanzi ◽  
Simone Gabellani ◽  
Luca Ferraris ◽  
Edoardo Cremonese ◽  
...  

<p>Understanding how deficit of precipitation impacts the hydrological cycle is of growing interest and is essential for water resource management. It has been recently observed that the relationship between precipitation and runoff during droughts is subjected to a shift in the sense that the predicted runoff is much less than the one expected due to the deficit in precipitation. Unraveling why this occurs requires an accurate knowledge of all the components of the water balance equation. However, large-scale and consistent samples of precipitation, runoff, evapotranspiration, ET and change in storage have always been challenging to collect. Here, we hypothesized that blending ground-based and remote-sensing data products could fill this gap. We present a countrywide dataset of catchment-scale water balance, covering the last 10 water years in Italy. Italy shows a broad variety of climatic and topographic features and faced several droughts over recent years. We use ground-based daily runoff data, interpolated precipitation maps, and a remote-sensed daily evapotranspiration dataset from the LSASAF ET product. The ET dataset is additionally compared with flux towers data across the country, obtaining root mean square errors on the order of 30 mm/month. Lastly, changes in storage are estimated to close the water balance. More than 100 catchments - including the major Italian basins - are selected, according to data availability and reliability. These catchments cover a wide range of size, morphologic and climatic characteristics. </p><p>This dataset is a strategic source of information to analyze catchment-scale runoff, ET and storage response to climatic variability across climates and landscapes.</p>


2020 ◽  
Vol 60 (5) ◽  
pp. 1193-1207 ◽  
Author(s):  
Philip S L Anderson ◽  
Michael D Rivera ◽  
Andrew V Suarez

Synopsis The field of comparative biomechanics strives to understand the diversity of the biological world through the lens of physics. To accomplish this, researchers apply a variety of modeling approaches to explore the evolution of form and function ranging from basic lever models to intricate computer simulations. While advances in technology have allowed for increasing model complexity, insight can still be gained through the use of low-parameter “simple” models. All models, regardless of complexity, are simplifications of reality and must make assumptions; “simple” models just make more assumptions than complex ones. However, “simple” models have several advantages. They allow individual parameters to be isolated and tested systematically, can be made applicable to a wide range of organisms and make good starting points for comparative studies, allowing for complexity to be added as needed. To illustrate these ideas, we perform a case study on body form and center of mass stability in ants. Ants show a wide diversity of body forms, particularly in terms of the relative size of the head, petiole(s), and gaster (the latter two make-up the segments of the abdomen not fused to thorax in hymenopterans). We use a “simple” model to explore whether balance issues pertaining to the center of mass influence patterns of segment expansion across major ant clades. Results from phylogenetic comparative methods imply that the location of the center of mass in an ant’s body is under stabilizing selection, constraining the center of mass to the middle segment (thorax) over the legs. This is potentially maintained by correlated rates of evolution between the head and gaster on either end. While these patterns arise from a model that makes several assumptions/simplifications relating to shape and materials, they still offer intriguing insights into the body plan of ants across ∼68% of their diversity. The results from our case study illustrate how “simple,” low-parameter models both highlight fundamental biomechanical trends and aid in crystalizing specific questions and hypotheses for more complex models to address.


2016 ◽  
Vol 20 (1) ◽  
pp. 443-478 ◽  
Author(s):  
P. Blair ◽  
W. Buytaert

Abstract. Interactions between humans and the environment are occurring on a scale that has never previously been seen; the scale of human interaction with the water cycle, along with the coupling present between social and hydrological systems, means that decisions that impact water also impact people. Models are often used to assist in decision-making regarding hydrological systems, and so in order for effective decisions to be made regarding water resource management, these interactions and feedbacks should be accounted for in models used to analyse systems in which water and humans interact. This paper reviews literature surrounding aspects of socio-hydrological modelling. It begins with background information regarding the current state of socio-hydrology as a discipline, before covering reasons for modelling and potential applications. Some important concepts that underlie socio-hydrological modelling efforts are then discussed, including ways of viewing socio-hydrological systems, space and time in modelling, complexity, data and model conceptualisation. Several modelling approaches are described, the stages in their development detailed and their applicability to socio-hydrological cases discussed. Gaps in research are then highlighted to guide directions for future research. The review of literature suggests that the nature of socio-hydrological study, being interdisciplinary, focusing on complex interactions between human and natural systems, and dealing with long horizons, is such that modelling will always present a challenge; it is, however, the task of the modeller to use the wide range of tools afforded to them to overcome these challenges as much as possible. The focus in socio-hydrology is on understanding the human–water system in a holistic sense, which differs from the problem solving focus of other water management fields, and as such models in socio-hydrology should be developed with a view to gaining new insight into these dynamics. There is an essential choice that socio-hydrological modellers face in deciding between representing individual system processes or viewing the system from a more abstracted level and modelling it as such; using these different approaches has implications for model development, applicability and the insight that they are capable of giving, and so the decision regarding how to model the system requires thorough consideration of, among other things, the nature of understanding that is sought.


2015 ◽  
Vol 40 (1) ◽  
pp. 38-65 ◽  
Author(s):  
Carola Cullum ◽  
Kevin H. Rogers ◽  
Gary Brierley ◽  
Ed T.F. Witkowski

There is growing demand for biogeographical landscape classifications and ecological maps that describe patterns of spatially co-varying biotic and abiotic ecosystem components. This demand is fuelled by increasing data availability and processing capacity, by institutional practices of land and water resource management and planning and by the growth of transdisciplinary science that requires the development of a shared conceptual framework through which to view landscape character and behaviour. Despite the widespread use of ecological maps, and the extent to which they have become embedded in institutional practice, policy and law, no standard approach to ecosystem mapping has emerged, such that there are many valid ways of mapping the same landscape. Consensus is possible only when there is agreement on the spatial entities to be mapped. We propose a way of defining such entities and identifying them in any given landscape. Landscapes are conceived in terms of a conceptual biophysical template that constrains a wide range of ecological processes at various hierarchical levels. The template is conceived as comprising co-evolved associations of soils, vegetation, topography and hydrology that form a dynamic mosaic characteristic of a particular topographic, climatic and geological context that is continually being shaped by many perturbations. We synthesise themes from vegetation, soil and river sciences, using hierarchy theory to frame a perspective that facilitates the definition of mappable landscape entities at three hierarchical levels of organisation. These entities are conceived as archetypal structural-functional units, with form and process linked in conceptual models that underpin each archetype. We describe how our approach has been used to map ecological entities in Kruger National Park, South Africa, showing how the proposed framework integrates key system components, providing transparent foundations for transdisciplinary approaches to landscape management and science.


2016 ◽  
Author(s):  
Massimiliano Cannata ◽  
Jakob Neumann ◽  
Mirko Cardoso ◽  
Rudy Rossetto ◽  
Laura Foglia

Time-series are an important aspect of environmental modelling, and are becoming more available through the requirements of the water framework directive as well as more important with the advancement of numerical simulation techniques and increased model complexity. For this reason, within the H2020 FREEWAT project, which aims at facilitating the adoption of modeling for water resource management, the integration of a tool for time-series analysis and processing has been foreseen. As a result the Observation Analysis Tool was developed to enable time-series visualisation, pre-processing of data for model development, and post-processing of model results. Observation Analysis Tool can act as a pre-processor for calibration observations, and will be expanded to incorporate its processing capabilities directly into the calibration process. The tool consists in an expandable Python library and in an interface integrated in the QGIS FREEWAT plug-in which include a large number of modelling capabilities, hydro-chemical data management tools and calibration capacity. The tool has been extensively used and tested in different european institutions, to collect a number of indications to drive the future development.


2016 ◽  
Author(s):  
Massimiliano Cannata ◽  
Jakob Neumann ◽  
Mirko Cardoso ◽  
Rudy Rossetto ◽  
Laura Foglia

Time-series are an important aspect of environmental modelling, and are becoming more available through the requirements of the water framework directive as well as more important with the advancement of numerical simulation techniques and increased model complexity. For this reason, within the H2020 FREEWAT project, which aims at facilitating the adoption of modeling for water resource management, the integration of a tool for time-series analysis and processing has been foreseen. As a result the Observation Analysis Tool was developed to enable time-series visualisation, pre-processing of data for model development, and post-processing of model results. Observation Analysis Tool can act as a pre-processor for calibration observations, and will be expanded to incorporate its processing capabilities directly into the calibration process. The tool consists in an expandable Python library and in an interface integrated in the QGIS FREEWAT plug-in which include a large number of modelling capabilities, hydro-chemical data management tools and calibration capacity. The tool has been extensively used and tested in different european institutions, to collect a number of indications to drive the future development.


2015 ◽  
Vol 12 (9) ◽  
pp. 8761-8851 ◽  
Author(s):  
P. Blair ◽  
W. Buytaert

Abstract. Interactions between humans and the environment are occurring on a scale that has never previously been seen; one environmental facet that has seen particular co-evolution with society is water. The scale of human interaction with the water cycle, along with the coupling present between social and hydrological systems, means that decisions that impact water also impact people. Models are often used to assist in decision-making regarding hydrological systems, and so in order for effective decisions to be made regarding water resource management, these interactions and feedbacks should be accounted for in models used to analyse systems in which water and humans interact. This paper reviews literature surrounding aspects of socio-hydrological modelling. It begins with background information regarding the current state of socio-hydrology as a discipline, before covering reasons for modelling and potential applications. Some important concepts that underlie socio-hydrological modelling efforts are then discussed, including ways of viewing socio-hydrological systems, space and time in modelling, complexity, data and model conceptualisation. Several modelling approaches are described, the stages in their development detailed and their applicability to socio-hydrological cases discussed. Gaps in research are then highlighted to guide directions for future research. The review of literature suggests that the nature of socio-hydrological study, being interdisciplinary, focusing on complex interactions between human and natural systems, and dealing with long horizons, is such that modelling will always present a challenge; it is, however, the task of the modeller to use the wide range tools afforded to them to overcome these challenges as much as possible. The focus in socio-hydrology is on understanding the human–water system in a holistic sense, which differs from the problem solving focus of other water management fields, and as such models in socio-hydrology should be developed with a view to gaining new insight into these dynamics. There is an essential choice that socio-hydrological modellers face in deciding between representing individual system processes, or viewing the system from a more abstracted level and modelling it as such; using these different approaches have implications for model development, applicability and the insight that they are capable of giving, and so the decision regarding how to model the system requires thorough consideration of, among other things, the nature of understanding that is sought.


2019 ◽  
Vol 62 (12) ◽  
pp. 4335-4350 ◽  
Author(s):  
Seth E. Tichenor ◽  
J. Scott Yaruss

Purpose This study explored group experiences and individual differences in the behaviors, thoughts, and feelings perceived by adults who stutter. Respondents' goals when speaking and prior participation in self-help/support groups were used to predict individual differences in reported behaviors, thoughts, and feelings. Method In this study, 502 adults who stutter completed a survey examining their behaviors, thoughts, and feelings in and around moments of stuttering. Data were analyzed to determine distributions of group and individual experiences. Results Speakers reported experiencing a wide range of both overt behaviors (e.g., repetitions) and covert behaviors (e.g., remaining silent, choosing not to speak). Having the goal of not stuttering when speaking was significantly associated with more covert behaviors and more negative cognitive and affective states, whereas a history of self-help/support group participation was significantly associated with a decreased probability of these behaviors and states. Conclusion Data from this survey suggest that participating in self-help/support groups and having a goal of communicating freely (as opposed to trying not to stutter) are associated with less negative life outcomes due to stuttering. Results further indicate that the behaviors, thoughts, and experiences most commonly reported by speakers may not be those that are most readily observed by listeners.


Author(s):  
D.L. Roke

The growth in horticultural and some industrial development in selected areas of Northland has led to a need for more specific and careful planning and control of limited resources in a number of major catchments. The potential irrigation demands for horhculture comprise over 60% of Northland's potential water requirements. By contrast, farm water supply needs are only 11% of these needs. Because of their importance to the Northland economy, and in the legislation these needs are given a high priority in water resource management planning. Land uses, including pastoral farming, require careful operation to reduce diffuse sources of pollution.


Sign in / Sign up

Export Citation Format

Share Document