Ecological classification and mapping for landscape management and science

2015 ◽  
Vol 40 (1) ◽  
pp. 38-65 ◽  
Author(s):  
Carola Cullum ◽  
Kevin H. Rogers ◽  
Gary Brierley ◽  
Ed T.F. Witkowski

There is growing demand for biogeographical landscape classifications and ecological maps that describe patterns of spatially co-varying biotic and abiotic ecosystem components. This demand is fuelled by increasing data availability and processing capacity, by institutional practices of land and water resource management and planning and by the growth of transdisciplinary science that requires the development of a shared conceptual framework through which to view landscape character and behaviour. Despite the widespread use of ecological maps, and the extent to which they have become embedded in institutional practice, policy and law, no standard approach to ecosystem mapping has emerged, such that there are many valid ways of mapping the same landscape. Consensus is possible only when there is agreement on the spatial entities to be mapped. We propose a way of defining such entities and identifying them in any given landscape. Landscapes are conceived in terms of a conceptual biophysical template that constrains a wide range of ecological processes at various hierarchical levels. The template is conceived as comprising co-evolved associations of soils, vegetation, topography and hydrology that form a dynamic mosaic characteristic of a particular topographic, climatic and geological context that is continually being shaped by many perturbations. We synthesise themes from vegetation, soil and river sciences, using hierarchy theory to frame a perspective that facilitates the definition of mappable landscape entities at three hierarchical levels of organisation. These entities are conceived as archetypal structural-functional units, with form and process linked in conceptual models that underpin each archetype. We describe how our approach has been used to map ecological entities in Kruger National Park, South Africa, showing how the proposed framework integrates key system components, providing transparent foundations for transdisciplinary approaches to landscape management and science.

SPE Journal ◽  
2018 ◽  
Vol 24 (02) ◽  
pp. 647-659 ◽  
Author(s):  
V. A. Torrealba ◽  
R. T. Johns ◽  
H.. Hoteit

Summary An accurate description of the microemulsion-phase behavior is critical for many industrial applications, including surfactant flooding in enhanced oil recovery (EOR). Recent phase-behavior models have assumed constant-shaped micelles, typically spherical, using net-average curvature (NAC), which is not consistent with scattering and microscopy experiments that suggest changes in shapes of the continuous and discontinuous domains. On the basis of the strong evidence of varying micellar shape, principal micellar curves were used recently to model interfacial tensions (IFTs). Huh's scaling equation (Huh 1979) also was coupled to this IFT model to generate phase-behavior estimates, but without accounting for the micellar shape. In this paper, we present a novel microemulsion-phase-behavior equation of state (EoS) that accounts for changing micellar curvatures under the assumption of a general-prolate spheroidal geometry, instead of through Huh's equation. This new EoS improves phase-behavior-modeling capabilities and eliminates the use of NAC in favor of a more-physical definition of characteristic length. Our new EoS can be used to fit and predict microemulsion-phase behavior irrespective of IFT-data availability. For the cases considered, the new EoS agrees well with experimental data for scans in both salinity and composition. The model also predicts phase-behavior data for a wide range of temperature and pressure, and it is validated against dynamic scattering experiments to show the physical significance of the approach.


2021 ◽  
Author(s):  
Jan Seibert ◽  
Sten Bergström

Abstract. Hydrological models are important tools that are commonly used as the basis for water resource management planning. In the 1970s the development of several relatively simple models started and a number of so-called conceptual (or bucket-type) models were suggested. In these models, the complex and heterogeneous hydrological processes in a catchment are represented by a limited number of storage elements and fluxes between these. While a major motivation for such relatively simple models in the early days were computational limitations, today some of these models are still used frequently despite vastly increased computational opportunities. The HBV model, which was first applied about 50 years ago in Sweden, is a typical example of a conceptual catchment model and has gained large popularity over the past 50 years. During several model intercomparisons, the HBV model performed well despite (or because of) its relatively simple model structure. Here, the history of model development from thoughtful considerations of different model structures to modelling studies using hundreds of catchments and cloud computing facilities, is described. Furthermore, the wide range of model applications is discussed. The aim is to provide an understanding of the background of model development and a basis for addressing the balance between model complexity and data availability, which will face hydrologists also in the coming decades.


2021 ◽  
Author(s):  
Giulia Bruno ◽  
Francesco Avanzi ◽  
Simone Gabellani ◽  
Luca Ferraris ◽  
Edoardo Cremonese ◽  
...  

<p>Understanding how deficit of precipitation impacts the hydrological cycle is of growing interest and is essential for water resource management. It has been recently observed that the relationship between precipitation and runoff during droughts is subjected to a shift in the sense that the predicted runoff is much less than the one expected due to the deficit in precipitation. Unraveling why this occurs requires an accurate knowledge of all the components of the water balance equation. However, large-scale and consistent samples of precipitation, runoff, evapotranspiration, ET and change in storage have always been challenging to collect. Here, we hypothesized that blending ground-based and remote-sensing data products could fill this gap. We present a countrywide dataset of catchment-scale water balance, covering the last 10 water years in Italy. Italy shows a broad variety of climatic and topographic features and faced several droughts over recent years. We use ground-based daily runoff data, interpolated precipitation maps, and a remote-sensed daily evapotranspiration dataset from the LSASAF ET product. The ET dataset is additionally compared with flux towers data across the country, obtaining root mean square errors on the order of 30 mm/month. Lastly, changes in storage are estimated to close the water balance. More than 100 catchments - including the major Italian basins - are selected, according to data availability and reliability. These catchments cover a wide range of size, morphologic and climatic characteristics. </p><p>This dataset is a strategic source of information to analyze catchment-scale runoff, ET and storage response to climatic variability across climates and landscapes.</p>


Author(s):  
Denis Tikhomirov

The purpose of the article is to typologize terminological definitions of security, to find out the general, to identify the originality of their interpretations depending on the subject of legal regulation. The methodological basis of the study is the methods that made it possible to obtain valid conclusions, in particular, the method of comparison, through which it became possible to correlate different interpretations of the term "security"; method of hermeneutics, which allowed to elaborate texts of normative legal acts of Ukraine, method of typologization, which made it possible to create typologization groups of variants of understanding of the term "security". Scientific novelty. The article analyzes the understanding of the term "security" in various regulatory acts in force in Ukraine. Typological groups were understood to understand the term "security". Conclusions. The analysis of the legal material makes it possible to confirm that the issues of security are within the scope of both legislative regulation and various specialized by-laws. However, today there is no single conception on how to interpret security terminology. This is due both to the wide range of social relations that are the subject of legal regulation and to the relativity of the notion of security itself and the lack of coherence of views on its definition in legal acts and in the scientific literature. The multiplicity of definitions is explained by combinations of material and procedural understanding, static - dynamic, and conditioned by the peculiarities of a particular branch of legal regulation, limited ability to use methods of one or another branch, the inter-branch nature of some variations of security, etc. Separation, common and different in the definition of "security" can be used to further standardize, in fact, the regulatory legal understanding of security to more effectively implement the legal regulation of the security direction.


Author(s):  
Tim Rutherford-Johnson

By the start of the 21st century many of the foundations of postwar culture had disappeared: Europe had been rebuilt and, as the EU, had become one of the world’s largest economies; the United States’ claim to global dominance was threatened; and the postwar social democratic consensus was being replaced by market-led neoliberalism. Most importantly of all, the Cold War was over, and the World Wide Web had been born. Music After The Fall considers contemporary musical composition against this changed backdrop, placing it in the context of globalization, digitization, and new media. Drawing on theories from the other arts, in particular art and architecture, it expands the definition of Western art music to include forms of composition, experimental music, sound art, and crossover work from across the spectrum, inside and beyond the concert hall. Each chapter considers a wide range of composers, performers, works, and institutions are considered critically to build up a broad and rich picture of the new music ecosystem, from North American string quartets to Lebanese improvisers, from South American electroacoustic studios to pianos in the Australian outback. A new approach to the study of contemporary music is developed that relies less on taxonomies of style and technique, and more on the comparison of different responses to common themes, among them permission, fluidity, excess, and loss.


Author(s):  
Branka Vulesevic ◽  
Naozumi Kubota ◽  
Ian G Burwash ◽  
Claire Cimadevilla ◽  
Sarah Tubiana ◽  
...  

Abstract Aims Severe aortic valve stenosis (AS) is defined by an aortic valve area (AVA) <1 cm2 or an AVA indexed to body surface area (BSA) <0.6 cm/m2, despite little evidence supporting the latter approach and important intrinsic limitations of BSA indexation. We hypothesized that AVA indexed to height (H) might be more applicable to a wide range of populations and body morphologies and might provide a better predictive accuracy. Methods and results In 1298 patients with degenerative AS and preserved ejection fraction from three different countries and continents (derivation cohort), we aimed to establish an AVA/H threshold that would be equivalent to 1.0 cm2 for defining severe AS. In a distinct prospective validation cohort of 395 patients, we compared the predictive accuracy of AVA/BSA and AVA/H. Correlations between AVA and AVA/BSA or AVA/H were excellent (all R2 > 0.79) but greater with AVA/H. Regressions lines were markedly different in obese and non-obese patients with AVA/BSA (P < 0.0001) but almost identical with AVA/H (P = 0.16). AVA/BSA values that corresponded to an AVA of 1.0 cm2 were markedly different in obese and non-obese patients (0.48 and 0.59 cm2/m2) but not with AVA/H (0.61 cm2/m for both). Agreement for the diagnosis of severe AS (AVA < 1 cm2) was significantly higher with AVA/H than with AVA/BSA (P < 0.05). Similar results were observed across the three countries. An AVA/H cut-off value of 0.6 cm2/m [HR = 8.2(5.6–12.1)] provided the best predictive value for the occurrence of AS-related events [absolute AVA of 1 cm2: HR = 7.3(5.0–10.7); AVA/BSA of 0.6 cm2/m2 HR = 6.7(4.4–10.0)]. Conclusion In a large multinational/multiracial cohort, AVA/H was better correlated with AVA than AVA/BSA and a cut-off value of 0.6 cm2/m provided a better diagnostic and prognostic value than 0.6 cm2/m2. Our results suggest that severe AS should be defined as an AVA < 1 cm2 or an AVA/H < 0.6 cm2/m rather than a BSA-indexed value of 0.6 cm2/m2.


2021 ◽  
Vol 31 ◽  
Author(s):  
ANDREA VEZZOSI ◽  
ANDERS MÖRTBERG ◽  
ANDREAS ABEL

Abstract Proof assistants based on dependent type theory provide expressive languages for both programming and proving within the same system. However, all of the major implementations lack powerful extensionality principles for reasoning about equality, such as function and propositional extensionality. These principles are typically added axiomatically which disrupts the constructive properties of these systems. Cubical type theory provides a solution by giving computational meaning to Homotopy Type Theory and Univalent Foundations, in particular to the univalence axiom and higher inductive types (HITs). This paper describes an extension of the dependently typed functional programming language Agda with cubical primitives, making it into a full-blown proof assistant with native support for univalence and a general schema of HITs. These new primitives allow the direct definition of function and propositional extensionality as well as quotient types, all with computational content. Additionally, thanks also to copatterns, bisimilarity is equivalent to equality for coinductive types. The adoption of cubical type theory extends Agda with support for a wide range of extensionality principles, without sacrificing type checking and constructivity.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 273
Author(s):  
Samuel Royer-Tardif ◽  
Jürgen Bauhus ◽  
Frédérik Doyon ◽  
Philippe Nolet ◽  
Nelson Thiffault ◽  
...  

Climate change is threatening our ability to manage forest ecosystems sustainably. Despite strong consensus on the need for a broad portfolio of options to face this challenge, diversified management options have yet to be widely implemented. Inspired by functional zoning, a concept aimed at optimizing biodiversity conservation and wood production in multiple-use forest landscapes, we present a portfolio of management options that intersects management objectives with forest vulnerability to better address the wide range of goals inherent to forest management under climate change. Using this approach, we illustrate how different adaptation options could be implemented when faced with impacts related to climate change and its uncertainty. These options range from establishing ecological reserves in climatic refuges, where self-organizing ecological processes can result in resilient forests, to intensive plantation silviculture that could ensure a stable wood supply in an uncertain future. While adaptation measures in forests that are less vulnerable correspond to the traditional functional zoning management objectives, forests with higher vulnerability might be candidates for transformative measures as they may be more susceptible to abrupt changes in structure and composition. To illustrate how this portfolio of management options could be applied, we present a theoretical case study for the eastern boreal forest of Canada. Even if these options are supported by solid evidence, their implementation across the landscape may present some challenges and will require good communication among stakeholders and with the public.


Author(s):  
Ying Pin Chua ◽  
Ying Xie ◽  
Poay Sian Sabrina Lee ◽  
Eng Sing Lee

Background: Multimorbidity presents a key challenge to healthcare systems globally. However, heterogeneity in the definition of multimorbidity and design of epidemiological studies results in difficulty in comparing multimorbidity studies. This scoping review aimed to describe multimorbidity prevalence in studies using large datasets and report the differences in multimorbidity definition and study design. Methods: We conducted a systematic search of MEDLINE, EMBASE, and CINAHL databases to identify large epidemiological studies on multimorbidity. We used the Preferred Reporting Items for Systematic Reviews and Meta-analysis Extension for Scoping Reviews (PRISMA-ScR) protocol for reporting the results. Results: Twenty articles were identified. We found two key definitions of multimorbidity: at least two (MM2+) or at least three (MM3+) chronic conditions. The prevalence of multimorbidity MM2+ ranged from 15.3% to 93.1%, and 11.8% to 89.7% in MM3+. The number of chronic conditions used by the articles ranged from 15 to 147, which were organized into 21 body system categories. There were seventeen cross-sectional studies and three retrospective cohort studies, and four diagnosis coding systems were used. Conclusions: We found a wide range in reported prevalence, definition, and conduct of multimorbidity studies. Obtaining consensus in these areas will facilitate better understanding of the magnitude and epidemiology of multimorbidity.


2016 ◽  
Vol 26 (5) ◽  
pp. 1134-1157 ◽  
Author(s):  
Donghee Shin ◽  
Myunggoon Choi ◽  
Jang Hyun Kim ◽  
Jae-gil Lee

Purpose The purpose of this paper is to examine the effects of interaction techniques (e.g. swiping and tapping) and the range of thumb movement on interactivity, engagement, attitude, and behavioral intention in single-handed interaction with smartphones. Design/methodology/approach A 2×2 between-participant experiment (technological features: swiping and tapping×range of thumb movement: wide and narrow) was conducted to study the effects of interaction techniques and thumb movement ranges. Findings The results showed that the range of thumb movement had significant effects on perceived interactivity, engagement, attitude, and behavioral intention, whereas no effects were observed for interaction techniques. A narrow range of thumb movement had more influence on the interactivity outcomes in comparison to a wide range of thumb movement. Practical implications While the subject of actual and perceived interactivity has been discussed, the issue has not been applied to smartphone. Based on the research results, the mobile industry may come up with a design strategy that balances feature- and perception-based interactivity. Originality/value This study adopted the perspective of the hybrid definition of interactivity, which includes both actual and perceived interactivity. Interactivity effect outcomes mediated by perceived interactivity.


Sign in / Sign up

Export Citation Format

Share Document