scholarly journals Delineation of discrete conduit networks in karst aquifers via combined analysis of tracer tests and geophysical data

2021 ◽  
Author(s):  
Jacques Bodin ◽  
Gilles Porel ◽  
Benoît Nauleau ◽  
Denis Paquet

Abstract. Assessment of the karst network geometry based on field data is an important challenge in the accurate modeling of karst aquifers. In this study, we propose an integrated approach for the identification of effective three-dimensional (3D) discrete karst conduit networks conditioned on tracer tests and geophysical data. The procedure is threefold: i) tracer breakthrough curves (BTCs) are processed via a regularized inversion procedure to determine the minimum number of distinct tracer flow paths between injection and monitoring points, ii) available surface-based geophysical data and borehole-logging measurements are aggregated into a 3D proxy model of aquifer hydraulic properties, and iii) single or multiple tracer flow paths are identified through the application of an alternative shortest path (SP) algorithm to the 3D proxy model. The capability of the proposed approach to adequately capture the geometrical structure of actual karst conduit systems mainly depends on the sensitivity of geophysical signals to karst features, whereas the relative completeness of the identified conduit network depends on the number and spatial configuration of tracer tests. The applicability of the proposed approach is illustrated through a case study at the Hydrogeological Experimental Site (HES) in Poitiers, France.

2021 ◽  
Author(s):  
Chaoqi Wang ◽  
Xiaoguang Wang ◽  
Vianney Sivelle ◽  
Samer Majdalani ◽  
Vincent Guinot ◽  
...  

<p>The Transfer Function (TF) approach, applying the Laplace transform, is known to be effective in interpreting tracer BreakThrough Curves (BTCs) in karst systems. Although this approach has several advantages over the classical Advection Dispersion Equation (ADE), the parameters of the TF are difficult to interpret directly in terms of transport properties, e.g., flow velocity and dispersion coefficient.</p><p>We present two approaches to relate the TF parameters to those of the ADE parameters. The first uses a consistency analysis, the other uses an asymptotic analysis in the Laplace space. The TF parameters can be transformed into equivalent ADE parameter groups that have an apparent physical meaning about the transport process. We further provide guidelines for choosing the suitable fitting models for artificial tracer tests and offer some suggestions for utilizing the TF approach in BTCs interpretation.</p>


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1499
Author(s):  
Davide Fronzi ◽  
Francesco Mirabella ◽  
Carlo Cardellini ◽  
Stefano Caliro ◽  
Stefano Palpacelli ◽  
...  

The interaction between fluids and tectonic structures such as fault systems is a much-discussed issue. Many scientific works are aimed at understanding what the role of fault systems in the displacement of deep fluids is, by investigating the interaction between the upper mantle, the lower crustal portion and the upraising of gasses carried by liquids. Many other scientific works try to explore the interaction between the recharge processes, i.e., precipitation, and the fault zones, aiming to recognize the function of the abovementioned structures and their capability to direct groundwater flow towards preferential drainage areas. Understanding the role of faults in the recharge processes of punctual and linear springs, meant as gaining streams, is a key point in hydrogeology, as it is known that faults can act either as flow barriers or as preferential flow paths. In this work an investigation of a fault system located in the Nera River catchment (Italy), based on geo-structural investigations, tracer tests, geochemical and isotopic recharge modelling, allows to identify the role of the normal fault system before and after the 2016–2017 central Italy seismic sequence (Mmax = 6.5). The outcome was achieved by an integrated approach consisting of a structural geology field work, combined with GIS-based analysis, and of a hydrogeological investigation based on artificial tracer tests and geochemical and isotopic analyses.


2021 ◽  
Author(s):  
Joseph Rizzo Cascio ◽  
Antonio Da Silva ◽  
Martino Ghetti ◽  
Martino Corti ◽  
Marco Montini

Abstract Objectives/Scope The benefits of real-time estimation of the cool down time of Subsea Production System (SPS) to prevent formation of hydrates are shown on a real oil and gas facility. The innovative tool developed is based on an integrated approach, which embeds a proxy model of SPS and hydrate curves, exploiting real-time field data from the Eni Digital Oil Field (eDOF, an OSIsoft PI based application developed and managed by Eni) to continuously estimate the cool down time before hydrates are formed during the shutdown. Methods, Procedures, Process The Asset value optimization and the Asset integrity of hydrocarbon production systems are complex and multi-disciplinary tasks in the oil and gas industry, due to the high number of variables and their synergy. An accurate physical model of SPS is built and, then, used to develop a proxy model, which integrates hydrate curves at different MeOH concentration, being able to estimate in real time the cool down time of SPS during the shutdown exploiting data from subsea transmitters made available by eDOF in order to prevent formation of hydrates. The tool is also integrated with a user-friendly interface, making all relevant information readily available to the operators on field. Results, Observations, Conclusions The integrated approach provides a continues estimation of cool down time based on real time field data (eDOF) in order to prevent formation of hydrates and activate preservation actions. An accurate physical model of SPS is built on a real business case using Olga software and cool down curves simulated considering different operating shutdown scenarios. Hydrate curves of the considered production fluid are also simulated at different MeOH concentration using PVTsim NOVA software. Off-line simulated curves are then implemented as numerical tables combined with eDOF data by an Eni developed fast executing proxy model to produce estimated cool down time before hydrates are formed. A graphic representation of SPS behavior and its cool down time estimation during shutdown are displayed and ready to use by the operators on field in support of the operations, saving cost and time. Novel/Additive Information The benefits of real time estimation of the cool down time of SPS to prevent hydrates formation are shown in terms of saving of time and cost during the shutdown operations on a real case application. This integrated approach allows to rely on a continue, automatic and acceptably accurate estimate of the available time before hydrates are formed in SPS, including the possibility to be further developed for cases where subsea transmitters are not available or extended to other flow assurance issues.


2021 ◽  
Author(s):  
Hsieh Chen ◽  
Sehoon Chang ◽  
Gawain Thomas ◽  
Wei Wang ◽  
Afnan Mashat ◽  
...  

Abstract We are developing new classes of barcoded advanced tracers, which, compared to present commercial offerings, can be optically detected in an automated fashion. The eventual goal for the advanced tracers is to deploy cost-effective, ubiquitous, long-term, and full-field tracer tests in supporting large-scale waterflooding optimization for improved oil recovery. In this paper, we compare model predictions to breakthrough data from two field tests of advanced tracers in a pilot during water alternating gas (WAG) cycles, where gas tracer tests have recently been performed as well. Two advanced tracer injections were performed at the test site. For the first injection, only a dipicolinic acid based advanced tracer (DPA) was injected. For the second injection, DPA and a phenanthroline- based advanced tracer, 4,7-bis(sulfonatophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid (BSPPDA), was injected in conjunction with a commercially available fluorobenzoic acid-based tracer (FBA) to benchmark their performance. Produced water samples were collected weekly for tracer analysis. Both newly developed 2D-high performance liquid chromatography/time-resolved fluorescence optical detection method (2D-HPLC/TRF) and liquid chromatography-mass spectrometry (LC-MS) were used to construct the breakthrough curves for the advanced tracers. In parallel, gas chromatography-mass spectrometry (GC-MS) was used to detect FBA tracer. Gas tracer tests have been performed on the same field. Since DPA, BSPPDA and FBA tracers were water tracers as designed, they were expected to appear in between gas tracer breakthroughs, and we observed exactly that for BSPPDA and FBA. Unexpectedly, the DPA predominantly appeared along with gas tracer breakthroughs, suggesting its favorable compatibility with the gas phase. We suspect the presence of some gas components rendered the medium more acidic, which likely protonates DPA molecules, thereby alters its hydrophilicity. A wealth of information could be gathered from the field tests. First, all tracers survived not only the harsh reservoir conditions but also the irregular WAG injections. Their successful detection from the producers suggested robustness of these materials for reservoir applications. Second, the breakthrough curves of the BSPPDA tracers using optical detection method were very similar to those of FBA tracers detected by GC-MS, substantiating the competency of our in-house materials and detection methods to the present commercial offerings. Finally, even though DPA has passed prior lab tests as a good water tracer, its high solubility to gas phase warrants further investigation. This paper summarizes key results from two field trials of the novel barcoded advanced tracers, of which both the tracer materials and detection methods are new to the industry. Importantly, the two co- injected advanced tracers showed opposite correlations to the gas tracers, highlighting the complex physicochemical interactions in reservoir conditions. Nevertheless, the information collected from the field trials is invaluable in enabling further design and utilization of the advanced tracers in fulfilling their wonderful promises.


2019 ◽  
Vol 12 ◽  
pp. 117862211986379 ◽  
Author(s):  
Christine B Georgakakos ◽  
Paul L Richards ◽  
M Todd Walter

Contamination from septic systems is one of the most difficult sources of nonpoint source (NPS) pollution to quantify. Quantification is difficult in part because locating malfunctioning septic systems within a watershed is challenging. This study used synthetic-DNA-based tracers to track flows from 2 septic systems. Sample DNA was quantified using quantitative polymerase chain reaction (qPCR). This technology could be especially useful for simultaneously assessing multiple septic systems because there are essentially infinite unique combinations of DNA bases such that unique tracers could be engineered for each septic system. Two studies were conducted: the first, to determine whether the tracers move through septic systems (experiment 1), and the second, to determine whether the tracers were detectable at watershed scales (experiment 2). In both cases, clear, although complex, breakthrough curves were detected. Experiment 1 revealed possible preferential flow paths that might not have been otherwise obvious, indicative of short circuiting systems. This proof of concept suggests that these tracers could be applied to watersheds suspected of experiencing NPS septic system pollution.


Sign in / Sign up

Export Citation Format

Share Document