scholarly journals Water scarcity under various socio-economic pathways and its potential effects on food production in the Yellow River basin

2017 ◽  
Vol 21 (2) ◽  
pp. 791-804 ◽  
Author(s):  
Yuanyuan Yin ◽  
Qiuhong Tang ◽  
Xingcai Liu ◽  
Xuejun Zhang

Abstract. Increasing population and socio-economic development have put great pressure on water resources of the Yellow River (YR) basin. The anticipated climate and socio-economic changes may further increase water stress. Many studies have investigated the changes in renewable water resources under various climate change scenarios, but few have considered the joint pressure from both climate change and socio-economic development. In this study, we assess water scarcity under various socio-economic pathways with emphasis on the impact of water scarcity on food production. The water demands in the 21st century are estimated based on the newly developed shared socio-economic pathways (SSPs) and renewable water supply is estimated using the climate projections under the Representative Concentration Pathway (RCP) 8.5 scenario. The assessment predicts that the renewable water resources would decrease slightly then increase. The domestic and industrial water withdrawals are projected to increase in the next a few decades and then remain at the high level or decrease slightly during the 21st century. The increase in water withdrawals will put the middle and lower reaches in a condition of severe water scarcity beginning in the next a few decades. If 40 % of the renewable water resources were used to sustain ecosystems, a portion of irrigated land would have to be converted to rain-fed agriculture, which would lead to a 2–11 % reduction in food production. This study highlights the links between water, food and ecosystems in a changing environment and suggests that trade-offs should be considered when developing regional adaptation strategies.

2016 ◽  
Author(s):  
Yuanyuan Yin ◽  
Qiuhong Tang ◽  
Xingcai Liu ◽  
Xuejun Zhang

Abstract. Increasing population and socio-economic development have put great pressure on water resources of the Yellow River (YR) basin. The anticipated climate and socio-economic changes may further increase water stress. Many studies have investigated the changes in renewable water resources under various climate change scenarios but few have considered the joint pressure from both climate change and socio-economic development. In this study, we assess water scarcity under various socio-economic pathways with an emphasis on the impact of water scarcity on food production. The water demands in the 21st century are estimated based on the newly developed Shared Socio-economic Pathways (SSPs) and the renewable water supply is obtained from the climate projections under the RCP 8.5 scenario. The assessment predicts that the renewable water resources and domestic water demand are projected to first increase and then decrease, while the industrial water demand is projected to rapidly increase in the basin during the 21st century. The water demands will put the middle and lower reaches in conditions of severe water scarcity beginning in the next a few decades (during 1990s–2040s). The industrial water demand is the main contributing factors to water scarcity. The irrigation water demand is another important contributing factor under SSP3. If more than 10 % of the renewable water resources are used to sustain ecosystems, a portion of irrigated land would have to be converted to rain-fed agriculture which would lead to a 9–38 % reduction in food production. This study highlights the links between water, food and ecosystems in a changing environment and suggests that trade-offs should be considered when developing regional adaptation strategies.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Zhiyong Wu ◽  
Heng Xiao ◽  
Guihua Lu ◽  
Jinming Chen

The water resources in the Yellow River basin (YRB) are vital to social and economic development in North and Northwest China. The basin has a marked continental monsoon climate and its water resources are especially vulnerable to climate change. Projected runoff in the basin for the period from 2001 to 2030 was simulated using the variable infiltration capacity (VIC) macroscale hydrology model. VIC was first calibrated using observations and then was driven by the precipitation and temperature projected by the RegCM3 high-resolution regional climate model under the IPCC scenario A2. Results show that, under the scenario A2, the mean annual temperature of the basin could increase by 1.6°C, while mean annual precipitation could decrease by 2.6%. There could be an 11.6% reduction in annual runoff in the basin according to the VIC projection. However, there are marked regional variations in these climate change impacts. Reductions of 13.6%, 25.7%, and 24.6% could be expected in the regions of Hekouzhen to Longmen, Longmen to Sanmenxia, and Sanmenxia to Huayuankou, respectively. Our study suggests that the condition of water resources in the YRB could become more severe in the period from 2001 to 2030 under the scenario A2.


2018 ◽  
Author(s):  
René R. Wijngaard ◽  
Hester Biemans ◽  
Arthur F. Lutz ◽  
Arun B. Shrestha ◽  
Philippus Wester ◽  
...  

Abstract. The Indus, Ganges, and Brahmaputra (IGB) river basins provide about 900 million people with water resources used for agricultural, domestic, and industrial purposes. These river basins are marked as climate change hotspot, where climate change is expected to affect monsoon dynamics and the amount of meltwater from snow and ice, and thus the amount of water available. Simultaneously, rapid and continuous population growth, and strong economic development will likely result in a rapid increase in water demand. Since quantification of these future trends is missing, it is rather uncertain how the future South Asian water gap will develop. To this end, we assess the combined impacts of climate change and socio-economic development on future blue water scarcity for the IGB until the end of the 21st century. We apply a coupled modelling approach consisting of the distributed cryospheric-hydrological model SPHY, which simulates current and future upstream water supply, and the hydrology and crop production model LPJmL, which simulates current and future downstream water supply and demand. We force the models with an ensemble of eight representative downscaled General Circulation Models (GCMs) that are selected from the RCP4.5 and RCP8.5 scenarios, and a set of land use and socio-economic scenarios that are consistent with the Shared Socio-economic Pathway (SSP) marker scenarios 1 and 3. The simulation outputs are used to analyse changes in water availability, supply, demand, and scarcity. The outcomes show an increase in surface water availability towards the end of the 21st century, which can mainly be attributed to increases in monsoon precipitation. However, despite the increase surface water availability, the strong socio-economic development and associated increase in water demand will likely lead to an increase in the water gap during the 21st century. This indicates that socio-economic development is the key driver in the evolution of the future South Asian water gap.


2018 ◽  
Vol 22 (12) ◽  
pp. 6297-6321 ◽  
Author(s):  
René Reijer Wijngaard ◽  
Hester Biemans ◽  
Arthur Friedrich Lutz ◽  
Arun Bhakta Shrestha ◽  
Philippus Wester ◽  
...  

Abstract. The Indus, Ganges, and Brahmaputra (IGB) river basins provide about 900 million people with water resources used for agricultural, domestic, and industrial purposes. These river basins are marked as “climate change hotspots”, where climate change is expected to affect monsoon dynamics and the amount of meltwater from snow and ice, and thus the amount of water available. Simultaneously, rapid and continuous population growth as well as strong economic development will likely result in a rapid increase in water demand. Since quantification of these future trends is missing, it is rather uncertain how the future South Asian water gap will develop. To this end, we assess the combined impacts of climate change and socio-economic development on the future “blue” water gap in the IGB until the end of the 21st century. We apply a coupled modelling approach consisting of the distributed cryospheric–hydrological model SPHY, which simulates current and future upstream water supply, and the hydrology and crop production model LPJmL, which simulates current and future downstream water supply and demand. We force the coupled models with an ensemble of eight representative downscaled general circulation models (GCMs) that are selected from the RCP4.5 and RCP8.5 scenarios, and a set of land use and socio-economic scenarios that are consistent with the shared socio-economic pathway (SSP) marker scenarios 1 and 3. The simulation outputs are used to analyse changes in the water availability, supply, demand, and gap. The outcomes show an increase in surface water availability towards the end of the 21st century, which can mainly be attributed to increases in monsoon precipitation. However, despite the increase in surface water availability, the strong socio-economic development and associated increase in water demand will likely lead to an increase in the water gap during the 21st century. This indicates that socio-economic development is the key driver in the evolution of the future South Asian water gap. The transgression of future environmental flows will likely be limited, with sustained environmental flow requirements during the monsoon season and unmet environmental flow requirements during the low-flow season in the Indus and Ganges river basins.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2443 ◽  
Author(s):  
Marnix van der Vat ◽  
Pascal Boderie ◽  
Kees Bons ◽  
Mark Hegnauer ◽  
Gerrit Hendriksen ◽  
...  

The Ganga Basin in India experiences problems related to water availability, water quality and ecological degradation because of over-abstraction of surface and groundwater, the presence of various hydraulic infrastructure, discharge of untreated sewage water, and other point and non-point source pollution. The basin is experiencing rapid socio-economic development that will increase both the demand for water and pollution load. Climate change adds to the uncertainty and future variability of water availability. To support strategic planning for the Ganga Basin by the Indian Ministry of Water Resources, River Development and Ganga Rejuvenation and the governments of the concerned Indian states, a river basin model was developed that integrates hydrology, geohydrology, water resources management, water quality and ecology. The model was developed with the involvement of key basin stakeholders across central and state governments. No previous models of the Ganga Basin integrate all these aspects, and this is the first time that a participatory approach was applied for the development of a Ganga Basin model. The model was applied to assess the impact of future socio-economic and climate change scenarios and management strategies. The results suggest that the impact of socio-economic development will far exceed the impacts of climate change. To balance the use of surface and groundwater to support sustained economic growth and an ecologically healthy river, it is necessary to combine investments in wastewater treatment and reservoir capacity with interventions that reduce water demand, especially for irrigation, and that increase dry season river flow. An important option for further investigation is the greater use of alluvial aquifers for temporary water storage.


2020 ◽  
Author(s):  
Pengxuan Xie ◽  
La Zhuo ◽  
Pute Wu

<p>Blue water (surface and ground water) and green water (water stored in unsaturated soil layer and canopy evapotranspiration from rainfall) are the two sources of water generated from precipitation and communicating vessels that define the limits of water resources for both human activities and ecosystems. However, the blue and green water evapotranspiration in irrigated fields and their contribution to blue and green water flows have not been identified in studies conducted on blue and green water resources. In addition, information on intra-annual variations in blue and green water footprints (WFs) is limited. In particular, there is a lack of information on water consumption obtained from hydrological model-based blue and green water assessments at the basin scales. In this study, the Yellow River Basin (YRB) over 2010-2018 was considered as the study case, and the inter- and intra-annual variations in blue and green water resources, WFs and water scarcities were quantified at sub-basin levels. Water resources and WFs were simulated using the Soil and Water Assessment Tool (SWAT) model. The results revealed that the annual average blue and green water resources of the YRB were 119.33 × 10<sup>9</sup> m<sup>3</sup> yr<sup>-1</sup> and 296.94 × 10<sup>9</sup> m<sup>3</sup> yr<sup>-1</sup>, respectively, over the study period. The total amount of green water flow was larger than the total amount of blue water flow each year. The blue and green WFs of the crops in the middle reach were significantly larger than those of the crops in the upper and lower reaches. The annual blue and green water scarcity levels under the consideration of the overall YRB were low. However, several areas in the middle reaches were subject to both blue and green water scarcities at least modest level for a minimum of three months a year. The northern region of the YRB was subject to significant and severe blue water scarcity throughout each year.</p>


Sign in / Sign up

Export Citation Format

Share Document