scholarly journals Estimating long-term groundwater storage and its controlling factors in Alberta, Canada

2018 ◽  
Vol 22 (12) ◽  
pp. 6241-6255 ◽  
Author(s):  
Soumendra N. Bhanja ◽  
Xiaokun Zhang ◽  
Junye Wang

Abstract. Groundwater is one of the most important natural resources for economic development and environmental sustainability. In this study, we estimated groundwater storage in 11 major river basins across Alberta, Canada, using a combination of remote sensing (Gravity Recovery and Climate Experiment, GRACE), in situ surface water data, and land surface modeling estimates (GWSAsat). We applied separate calculations for unconfined and confined aquifers, for the first time, to represent their hydrogeological differences. Storage coefficients for the individual wells were incorporated to compute the monthly in situ groundwater storage (GWSAobs). The GWSAsat values from the two satellite-based products were compared with GWSAobs estimates. The estimates of GWSAsat were in good agreement with the GWSAobs in terms of pattern and magnitude (e.g., RMSE ranged from 2 to 14 cm). While comparing GWSAsat with GWSAobs, most of the statistical analyses provide mixed responses; however the Hodrick–Prescott trend analysis clearly showed a better performance of the GRACE-mascon estimate. The results showed trends of GWSAobs depletion in 5 of the 11 basins. Our results indicate that precipitation played an important role in influencing the GWSAobs variation in 4 of the 11 basins studied. A combination of rainfall and snowmelt positively influences the GWSAobs in six basins. Water budget analysis showed an availability of comparatively lower terrestrial water in 9 of the 11 basins in the study period. Historical groundwater recharge estimates indicate a reduction of groundwater recharge in eight basins during 1960–2009. The output of this study could be used to develop sustainable water withdrawal strategies in Alberta, Canada.

2018 ◽  
Author(s):  
Soumendra N. Bhanja ◽  
Xiaokun Zhang ◽  
Junye Wang

Abstract. Groundwater is one of the most important natural resources for economic development and environmental sustainability. However, groundwater storage can be significantly affected by climate change through permafrost thaw, snowpack change, and glacier retreat in cold climate regions, and human activities due to over-use and over-extraction of resources. Therefore, it is very important to be able to estimate long-term groundwater storage for biodiversity and sustainable development. In this study, we estimated groundwater storage in 11 major river basins across Alberta, Canada using a combination of remote sensing (Gravity Recovery and Climate Experiment-GRACE), in situ surface water data, and land surface modelling estimates (GWSAsat). We applied separate calculations for unconfined and confined aquifers, for the first time, to represent their hydrogeological differences. Storage coefficients for the individual wells were incorporated to compute the monthly GWSAobs. The GWSAsat from the two satellite-based products were compared with in situ groundwater storage (GWSAobs) estimates. The estimates of GWSAsat were in good agreement with the GWSAobs in terms of pattern and magnitude (e.g., RMSE ranged from 2 to 14 cm). While comparing GWSAsat with GWSAsat, most of the statistical analyses provide mixed responses, however the Hodrick-Presscott trend analysis clearly showed a better performance of the GRACE-mascon estimate. The results showed trends of GWSAobs depletion in 5 of the 11 basins. Our results indicate that the precipitation played an important role in influencing the GWSAobs variation in 4 of the 11 basins studied. Water budget analysis showed an availability of comparatively lower terrestrial water in 9 of the 11 basins in the study period. Historical groundwater recharge estimates indicate a reduction of groundwater recharge in 8 basins during 1960–2009. The output of this study could be used to develop sustainable water withdrawal strategies in Alberta, Canada.


2020 ◽  
Vol 11 (3) ◽  
pp. 755-774 ◽  
Author(s):  
Mohammad Shamsudduha ◽  
Richard G. Taylor

Abstract. Under variable and changing climates groundwater storage sustains vital ecosystems and enables freshwater withdrawals globally for agriculture, drinking water, and industry. Here, we assess recent changes in groundwater storage (ΔGWS) from 2002 to 2016 in 37 of the world's large aquifer systems using an ensemble of datasets from the Gravity Recovery and Climate Experiment (GRACE) and land surface models (LSMs). Ensemble GRACE-derived ΔGWS is well reconciled to in situ observations (r=0.62–0.86, p value <0.001) for two tropical basins with regional piezometric networks and contrasting climate regimes. Trends in GRACE-derived ΔGWS are overwhelmingly non-linear; indeed, linear declining trends adequately (R2>0.5, p value <0.001) explain variability in only two aquifer systems. Non-linearity in ΔGWS derives, in part, from the episodic nature of groundwater replenishment associated with extreme annual (>90th percentile, 1901–2016) precipitation and is inconsistent with prevailing narratives of global-scale groundwater depletion at the scale of the GRACE footprint (∼200 000 km2). Substantial uncertainty remains in estimates of GRACE-derived ΔGWS, evident from 20 realisations presented here, but these data provide a regional context to changes in groundwater storage observed more locally through piezometry.


2019 ◽  
Author(s):  
Mohammad Shamsudduha ◽  
Richard G. Taylor

Abstract. Under variable and changing climates groundwater storage sustains vital ecosystems and enables freshwater withdrawals globally for agriculture, drinking-water, and industry. Here, we assess recent changes in groundwater storage (ΔGWS) from 2002 to 2016 in 37 of the world's large aquifer systems using an ensemble of datasets from the Gravity Recovery and Climate Experiment (GRACE) and Land Surface Models (LSMs). Ensemble GRACE-derived ΔGWS is well reconciled to in-situ observations (r = 0.62–0.86, p value  0.5, p value  90th percentile, 1901–2016) precipitation and is inconsistent with prevailing narratives of global-scale groundwater depletion. Substantial uncertainty remains in estimates of GRACE-derived ΔGWS, evident from 20 realisations presented here, but these data provide a regional context to changes in groundwater storage observed more locally through piezometry.


2017 ◽  
Vol 21 (9) ◽  
pp. 4533-4549 ◽  
Author(s):  
Mohammad Shamsudduha ◽  
Richard G. Taylor ◽  
Darren Jones ◽  
Laurent Longuevergne ◽  
Michael Owor ◽  
...  

Abstract. GRACE (Gravity Recovery and Climate Experiment) satellite data monitor large-scale changes in total terrestrial water storage (ΔTWS), providing an invaluable tool where in situ observations are limited. Substantial uncertainty remains, however, in the amplitude of GRACE gravity signals and the disaggregation of TWS into individual terrestrial water stores (e.g. groundwater storage). Here, we test the phase and amplitude of three GRACE ΔTWS signals from five commonly used gridded products (i.e. NASA's GRCTellus: CSR, JPL, GFZ; JPL-Mascons; GRGS GRACE) using in situ data and modelled soil moisture from the Global Land Data Assimilation System (GLDAS) in two sub-basins (LVB: Lake Victoria Basin; LKB: Lake Kyoga Basin) of the Upper Nile Basin. The analysis extends from January 2003 to December 2012, but focuses on a large and accurately observed reduction in ΔTWS of 83 km3 from 2003 to 2006 in the Lake Victoria Basin. We reveal substantial variability in current GRACE products to quantify the reduction of ΔTWS in Lake Victoria that ranges from 80 km3 (JPL-Mascons) to 69 and 31 km3 for GRGS and GRCTellus respectively. Representation of the phase in TWS in the Upper Nile Basin by GRACE products varies but is generally robust with GRGS, JPL-Mascons, and GRCTellus (ensemble mean of CSR, JPL, and GFZ time-series data), explaining 90, 84, and 75 % of the variance respectively in "in situ" or "bottom-up" ΔTWS in the LVB. Resolution of changes in groundwater storage (ΔGWS) from GRACE ΔTWS is greatly constrained by both uncertainty in changes in soil-moisture storage (ΔSMS) modelled by GLDAS LSMs (CLM, NOAH, VIC) and the low annual amplitudes in ΔGWS (e.g. 1.8–4.9 cm) observed in deeply weathered crystalline rocks underlying the Upper Nile Basin. Our study highlights the substantial uncertainty in the amplitude of ΔTWS that can result from different data-processing strategies in commonly used, gridded GRACE products; this uncertainty is disregarded in analyses of ΔTWS and individual stores applying a single GRACE product.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Wenjie Yin ◽  
Litang Hu ◽  
Jiu Jimmy Jiao

Dynamic change of groundwater storage is one of the most important topics in the sustainable management of groundwater resources. Groundwater storage variations are firstly isolated from the terrestrial water storage change using the Global Land Data Assimilation System (GLDAS). Two datasets are used: (1) annual groundwater resources and (2) groundwater storage changes estimated from point-based groundwater level data in observation wells. Results show that the match between the GRACE-derived groundwater storage variations and annual water resources variation is not good in six river basins of Northern China. However, it is relatively good between yearly GRACE-derived groundwater storage data and groundwater storage change dataset in Huang-Huai-Hai Plain and the Song-Liao Plain. The mean annual depletion rate of groundwater storage in the Northern China was approximately 1.70 billion m3 yr−1 from 2003 to 2012. In terms of provinces, the yearly depletion rate is higher in Jing-Jin-Ji (Beijing, Tianjin, and Hebei province) and lowest in Henan province from 2003 to 2012, with the rate of 0.70 and 0.21 cm yr−1 Equivalent Water Height (EWH), respectively. Different land surface models suggest that the patterns from different models almost remain the same, and soil moisture variations are generally bigger than snow water equivalent variations.


2017 ◽  
Author(s):  
Mohammad Shamsudduha ◽  
Richard G. Taylor ◽  
Darren Jones ◽  
Laurent Longuevergne ◽  
Michael Owor ◽  
...  

Abstract. GRACE (Gravity Recovery and Climate Experiment) satellite data monitor large-scale changes in total terrestrial water storage (ΔTWS) providing an invaluable tool where in situ observations are limited. Substantial uncertainty remains, however, in the amplitude of GRACE gravity signals and the disaggregation of ΔTWS into individual terrestrial water stores (e.g. groundwater storage). Here, we test the phase and amplitude of GRACE ΔTWS signals from 5 commonly-used gridded products (i.e., NASA's GRCTellus: CSR, JPL GFZ; JPL-Mascons; GRGS GRACE) using in situ data and modelled soil-moisture from the Global Land Data Assimilation System (GLDAS). The focus of this analysis is a large and accurately observed reduction in ΔTWS of 75 km3 from 2004 to 2006 in Lake Victoria in the Upper Nile Basin. We reveal substantial variability in current GRACE products to quantify the reduction of ΔTWS in Lake Victoria that ranges from 68 km3 (GRGS) to 50 km3 and 26 km3 for JPL-Mascons and GRCTellus, respectively. Representation of the phase in ΔTWS in the Upper Nile Basin by GRACE products varies but is generally robust with GRGS, JPL-Mascons and GRCTellus (ensemble mean of CSR, JPL and GFZ time-series data) explaining 91 %, 85 %, and 77 % of the variance, respectively, in in-situ ΔTWS. Resolution of changes in groundwater storage (ΔGWS) from GRACE ΔTWS is greatly constrained by both uncertainty in modelled changes in soil-moisture storage (ΔSMS) and the low annual amplitudes in ΔGWS (e.g., 3.5 to 4.4 cm) observed in deeply weathered crystalline rocks underlying the Upper Nile Basin. Our study highlights the substantial uncertainty in the amplitude of ΔTWS that can result from different data-processing strategies in commonly used, gridded GRACE products.


2020 ◽  
Author(s):  
Gaohong Yin ◽  
Barton Forman ◽  
Jing Wang

&lt;p&gt;Accurate estimation of terrestrial water storage (TWS) is crucial in the characterization of the terrestrial hydrologic cycle. The launch of GRACE and GRACE Follow-On (GRACE-FO) missions provide an unprecedented opportunity to monitor the change in TWS across the globe. However, the spatial and temporal resolutions provided by GRACE/GRACE-FO are often too coarse for many hydrologic applications. Land surface models (LSMs) provide estimates of TWS at a finer spatio-temporal resolution, but most LSMs lack complete, all-encompassing physical representations of the hydrological system such as deep groundwater storage or anthropogenic influences (e.g., groundwater pumping and surface water regulation). In recent years, geodetic measurements from the ground-based Global Positioning System (GPS) network have been increasingly used in hydrologic studies based on the elastic response of the Earth&amp;#8217;s surface to mass redistribution. This study explores the potential of improving our knowledge in TWS change via merging the information provided by ground-based GPS, GRACE, and the NASA Catchment Land Surface Model (Catchment), especially for the TWS change during an extended drought period.&lt;/p&gt; &lt;p&gt;&amp;#160;&lt;/p&gt; &lt;p&gt;Ground-based GPS observations of vertical displacement and GRACE TWS retrievals were assimilated into the Catchment LSM, respectively, using an ensemble Kalman filter (EnKF) in order to improve the estimation accuracy of TWS change. The data assimilation (DA) framework effectively downscaled TWS into its constituent components (e.g., snow and soil moisture) as well as improved estimates of hydrologic fluxes (e.g., runoff). Estimated TWS change from the open loop (OL; without assimilation) and GPS DA (i.e., using GPS-based vertical displacement during assimilation) simulations were evaluated against GRACE TWS retrievals. Results show that GPS DA improved estimation accuracy of TWS change relative to the OL, especially during an extended drought period post-2011 in the western United States (e.g., the correlation coefficient R&lt;sub&gt;OL&lt;/sub&gt; = 0.46 and R&lt;sub&gt;GPSDA&lt;/sub&gt; = 0.82 in the Great Basin). The performance of GPS DA and GRACE DA in estimating TWS constituent components and hydrologic fluxes were evaluated against in situ measurements. Results show that GPS DA improves snow water equivalent (SWE) estimates with improved R values found over 76% of all pixels that are collocated with in situ stations in the Great Basin. The findings in this study indicate the potential use of GPS DA and GRACE DA for TWS characterization. Both GRACE and ground-based GPS provide complementary TWS change information, which helps correct for missing physics in the LSM. Additionally, this study provides motivation for a multi-variate assimilation approach to simultaneously merge both GRACE and ground-based GPS into an LSM to further improve modeled TWS and its constituent components.&lt;/p&gt;


2020 ◽  
Author(s):  
Peyman Saemian ◽  
Mohammad Javad Tourian ◽  
Nico Sneeuw

&lt;p&gt;Climate change and the growing demand for freshwater have raised the frequency and intensity of extreme events like drought. Satellite observations have improved our understanding of the temporal and spatial variability of droughts. Since March 2002, the Gravity Recovery and Climate Experiment (GRACE) and its successor GRACE Follow-On (GRACE-FO) have been observing variations in Earth's gravity field yielding valuable information about changes in terrestrial water storage anomaly (TWSA). The terrestrial water storage vertically integrates all forms of water on and beneath land surface including snow, surface water, soil moisture, and groundwater storage.&lt;/p&gt;&lt;p&gt;Drought indices help to monitor drought by characterizing it in terms of their severity, location, duration and timing. Several drought indices have been developed based on GRACE water storage anomaly from a GRACE-based climatology, most of which suffer from the short record of GRACE, about 15 years, for their climatology. The limited duration of the GRACE observations necessitates the use of external datasets of TWSA with a more extended period for climatology. Drought characterization comes with its own uncertainties due to the inherent uncertainty in the GRACE data, the various post-processing approaches of GRACE data, and different options for external datasets on the other hand.&lt;/p&gt;&lt;p&gt;This study offers a method to quantify uncertainties for the storage-based drought index. Moreover, we assess the sensitivity of major global river basins to the duration of the observations. The outcome of the study is invaluable in the sense that it allows for a more informative storage based drought, including uncertainty, thus enabling a more realistic risk assessment.&lt;/p&gt;


2020 ◽  
Vol 12 (3) ◽  
pp. 511 ◽  
Author(s):  
Yulong Zhong ◽  
Min Zhong ◽  
Yuna Mao ◽  
Bing Ji

Evapotranspiration (ET) is usually difficult to estimate at the regional scale due to scarce direct measurements. This study uses the water balance equation to calculate the regional ET with observations of precipitation, runoff, and terrestrial water storage changes (TWSC) in nine exorheic catchments of China. We compared the regional ET estimates from a water balance perspective with and without considering TWSC (ETWB: ET estimates with considering TWSC, and ETPQ: ET estimates from precipitation minus runoff without considering TWSC). Results show that the regional annual ET ranges from 417.7 mm/yr to 831.5 mm/yr in the nine exorheic catchments based on the water balance equation. The impact of ignoring TWSC on calculating ET is notable, as the root mean square errors (RMSEs) of annual ET between ETWB and ETPQ range from 12.0–105.8 mm/yr (2.6–12.7% in corresponding annual ET) among the exorheic catchments. We also compared the estimated regional ET with other ET products. Different precipitation products are assessed to explain the inconsistency between different ET products and regional ET from a water balance perspective. The RMSEs between ET estimates from Gravity Recovery and Climate Experiment (GRACE) and ET from land surface models can be reduced if the deviation of precipitation forcing data is considered. ET estimates from Global Land Evaporation Amsterdam Model (GLEAM) can be improved by reducing the uncertainty of precipitation forcing data in three semiarid catchments. This study emphasizes the importance of considering TWSC when calculating the regional ET using a water balance equation and provides more accurate ET estimates to help improve modeled ET results.


2013 ◽  
Vol 17 (10) ◽  
pp. 3707-3720 ◽  
Author(s):  
B. Mueller ◽  
M. Hirschi ◽  
C. Jimenez ◽  
P. Ciais ◽  
P. A. Dirmeyer ◽  
...  

Abstract. Land evapotranspiration (ET) estimates are available from several global data sets. Here, monthly global land ET synthesis products, merged from these individual data sets over the time periods 1989–1995 (7 yr) and 1989–2005 (17 yr), are presented. The merged synthesis products over the shorter period are based on a total of 40 distinct data sets while those over the longer period are based on a total of 14 data sets. In the individual data sets, ET is derived from satellite and/or in situ observations (diagnostic data sets) or calculated via land-surface models (LSMs) driven with observations-based forcing or output from atmospheric reanalyses. Statistics for four merged synthesis products are provided, one including all data sets and three including only data sets from one category each (diagnostic, LSMs, and reanalyses). The multi-annual variations of ET in the merged synthesis products display realistic responses. They are also consistent with previous findings of a global increase in ET between 1989 and 1997 (0.13 mm yr−2 in our merged product) followed by a significant decrease in this trend (−0.18 mm yr−2), although these trends are relatively small compared to the uncertainty of absolute ET values. The global mean ET from the merged synthesis products (based on all data sets) is 493 mm yr−1 (1.35 mm d−1) for both the 1989–1995 and 1989–2005 products, which is relatively low compared to previously published estimates. We estimate global runoff (precipitation minus ET) to 263 mm yr−1 (34 406 km3 yr−1) for a total land area of 130 922 000 km2. Precipitation, being an important driving factor and input to most simulated ET data sets, presents uncertainties between single data sets as large as those in the ET estimates. In order to reduce uncertainties in current ET products, improving the accuracy of the input variables, especially precipitation, as well as the parameterizations of ET, are crucial.


Sign in / Sign up

Export Citation Format

Share Document