scholarly journals Worldwide lake level trends and responses to background climate variation

2020 ◽  
Vol 24 (5) ◽  
pp. 2593-2608 ◽  
Author(s):  
Benjamin M. Kraemer ◽  
Anton Seimon ◽  
Rita Adrian ◽  
Peter B. McIntyre

Abstract. Lakes provide many important benefits to society, including drinking water, flood attenuation, nutrition, and recreation. Anthropogenic environmental changes may affect these benefits by altering lake water levels. However, background climate oscillations such as the El Niño–Southern Oscillation and the North Atlantic Oscillation can obscure long-term trends in water levels, creating uncertainty over the strength and ubiquity of anthropogenic effects on lakes. Here we account for the effects of background climate variation and test for long-term (1992–2019) trends in water levels in 200 globally distributed large lakes using satellite altimetry data. The median percentage of water level variation associated with background climate variation was 58 %, with an additional 10 % explained by seasonal variation and 25 % by the long-term trend. The relative influence of specific axes of background climate variation on water levels varied substantially across and within regions. After removing the effects of background climate variation on water levels, long-term water level trend estimates were lower (median: +0.8 cm yr−1) than calculated from raw water level data (median: +1.2 cm yr−1). However, the trends became more statistically significant in 86 % of lakes after removing the effects of background climate variation (the median p value of trends changed from 0.16 to 0.02). Thus, robust tests for long-term trends in lake water levels which may or may not be anthropogenic will require prior isolation and removal of the effects of background climate variation. Our findings suggest that background climate variation often masks long-term trends in environmental variables but can be accounted for through more comprehensive statistical analyses.

2019 ◽  
Author(s):  
Benjamin M. Kraemer ◽  
Anton Seimon ◽  
Rita Adrian ◽  
Peter B. McIntyre

Abstract. Lakes provide many important benefits to society including drinking water, flood attenuation, nutrition, and recreation. Anthropogenic environmental changes may affect these benefits by altering lake water levels. However, background climate oscillations such as the El Nino Southern Oscillation, and the North Atlantic Oscillation can obscure long-term trends in water levels, creating uncertainty over the strength and ubiquity of anthropogenic effects on lakes. Here we account for the effects of background climate variation and test for long-term (1992–2019) trends in water levels in 117 globally-distributed large lakes using satellite altimetry data. On average, 27 % of water level variation in individual lakes was associated with background climate variation. The relative influence of specific axes of background climate variation on water levels varied substantially across and within regions. After removing the effects of background climate variation on water levels, long-term water level trend estimates were lower (+1.0 cm year−1) than calculated from raw water level data (+1.4 cm year−1). However, the trends became more statistically significant in 76 % of lakes after removing the effects of background climate variation (the median p-value of trends changed from 0.12 to 0.02). Thus, robust tests for long-term trends in lake water levels which may or may not be anthropogenic will require prior isolation and removal of the effects of background climate variation. Our findings suggest that background climate variation often masks long-term trends in environmental variables, but can be accounted for through more comprehensive statistical analyses.


The Holocene ◽  
2017 ◽  
Vol 27 (8) ◽  
pp. 1214-1226 ◽  
Author(s):  
Thomas A Bianchette ◽  
Terrence A McCloskey ◽  
Kam-biu Liu

The lack of multi-millennial multi-proxy paleoenvironmental reconstructions from Mexico’s Pacific coast has limited our understanding of the regional response to climate change and sea-level rise. A 479-cm core covering the last 6900 years was extracted from Laguna Mitla in the state of Guerrero on Mexico’s Pacific coast. Beginning as a Rhizophora-dominated salt pan ~6900 yr BP, at ~6500 yr BP, the site transitioned to a mangrove swamp dominated by Laguncularia, which lasted about 300 years. The beach barrier formed from ~6200 to 5200 yr BP, during which time, the site existed as an intermittently sheltered bay, the result of large, rapid changes in wave energy associated with the shifting barrier location and changes in stability. After the beach barrier was stabilized at ~5200 yr BP, water level at the coring site became a function of precipitation rather than sea level. Since that time, deposition has alternated between peat, laid down in a mangrove swamp, and clay intervals characterized by high concentrations of titanium and a predominantly regional pollen signal, representing open-water lagoon phases. Seven periods of increased water level, varying in duration, occurred during the backbarrier period, with El Niño-Southern Oscillation (ENSO) likely the main climatic mechanism causing these periodic shifts in the paleo-precipitation levels. We suggest that the deepest water levels detected over the last ~3200 years correlate with periods of increased ENSO activity. The spatial distribution of tropical cyclone rainfall, which represents a significant percentage of total annual precipitation along Mexico’s Pacific coast, may explain the inconsistencies between our record and paleoclimatic records from Mexico’s interior, but more work is needed to test this hypothesis.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hendri Irwandi ◽  
Mohammad Syamsu Rosid ◽  
Terry Mart

AbstractThis research quantitatively and qualitatively analyzes the factors responsible for the water level variations in Lake Toba, North Sumatra Province, Indonesia. According to several studies carried out from 1993 to 2020, changes in the water level were associated with climate variability, climate change, and human activities. Furthermore, these studies stated that reduced rainfall during the rainy season due to the El Niño Southern Oscillation (ENSO) and the continuous increase in the maximum and average temperatures were some of the effects of climate change in the Lake Toba catchment area. Additionally, human interventions such as industrial activities, population growth, and damage to the surrounding environment of the Lake Toba watershed had significant impacts in terms of decreasing the water level. However, these studies were unable to determine the factor that had the most significant effect, although studies on other lakes worldwide have shown these factors are the main causes of fluctuations or decreases in water levels. A simulation study of Lake Toba's water balance showed the possibility of having a water surplus until the mid-twenty-first century. The input discharge was predicted to be greater than the output; therefore, Lake Toba could be optimized without affecting the future water level. However, the climate projections depicted a different situation, with scenarios predicting the possibility of extreme climate anomalies, demonstrating drier climatic conditions in the future. This review concludes that it is necessary to conduct an in-depth, comprehensive, and systematic study to identify the most dominant factor among the three that is causing the decrease in the Lake Toba water level and to describe the future projected water level.


The Holocene ◽  
2020 ◽  
pp. 095968362098168
Author(s):  
Christian Stolz ◽  
Magdalena Suchora ◽  
Irena A Pidek ◽  
Alexander Fülling

The specific aim of the study was to investigate how four adjacent geomorphological systems – a lake, a dune field, a small alluvial fan and a slope system – responded to the same impacts. Lake Tresssee is a shallow lake in the North of Germany (Schleswig-Holstein). During the Holocene, the lake’s water surface declined drastically, predominately as a consequence of human impact. The adjacent inland dune field shows several traces of former sand drift events. Using 30 new radiocarbon ages and the results of 16 OSL samples, this study aims to create a new timeline tracing the interaction between lake and dunes, as well, as how both the lake and the dunes reacted to environmental changes. The water level of the lake is presumed to have peaked during the period before the Younger Dryas (YD; start at 10.73 ka BC). After the Boreal period (OSL age 8050 ± 690 BC) the level must have undergone fluctuations triggered by climatic events and the first human influences. The last demonstrable high water level was during the Late Bronze Age (1003–844 cal. BC). The first to the 9th century AD saw slightly shrinking water levels, and more significant ones thereafter. In the 19th century, the lake area was artificially reduced to a minimum by the human population. In the dunes, a total of seven different phases of sand drift were demonstrated for the last 13,000 years. It is one of the most precisely dated inland-dune chronologies of Central Europe. The small alluvial fan took shape mainly between the 13th and 17th centuries AD. After 1700 cal. BC (Middle Bronze Age), and again during the sixth and seventh centuries AD, we find enhanced slope activity with the formation of Holocene colluvia.


2019 ◽  
Vol 76 (5) ◽  
pp. 831-846 ◽  
Author(s):  
C.J. Watras ◽  
D. Grande ◽  
A.W. Latzka ◽  
L.S. Tate

Atmospheric deposition is the principal source of mercury (Hg) to remote northern landscapes, but its fate depends on multiple factors and internal feedbacks. Here we document long-term trends and cycles of Hg in the air, precipitation, surface water, and fish of northern Wisconsin that span the past three decades, and we investigate relationships to atmospheric processes and other variables, especially the regional water cycle. Consistent with declining emission inventories, there was evidence of declining trends in these time series, but the time series for Hg in some lakes and most fish were dominated by a near-decadal oscillation that tracked the regional oscillation of water levels. Concentrations of important solutes (SO4, dissolved organic carbon) and the acid–base status of lake water also tracked water levels in ways that cannot be attributed to simple dilution or concentration. The explanatory mechanism is analogous to the “reservoir effect” wherein littoral sediments are periodically exposed and reflooded, altering the internal cycles of sulfur, carbon, and mercury. These climatically driven, near-decadal oscillations confound short or sparse time series and complicate relationships among Hg emissions, deposition, and bioaccumulation.


2021 ◽  
Vol 25 (3) ◽  
pp. 1643-1670
Author(s):  
Song Shu ◽  
Hongxing Liu ◽  
Richard A. Beck ◽  
Frédéric Frappart ◽  
Johanna Korhonen ◽  
...  

Abstract. A total of 13 satellite missions have been launched since 1985, with different types of radar altimeters on board. This study intends to make a comprehensive evaluation of historic and currently operational satellite radar altimetry missions for lake water level retrieval over the same set of lakes and to develop a strategy for constructing consistent long-term water level records for inland lakes at global scale. The lake water level estimates produced by different retracking algorithms (retrackers) of the satellite missions were compared with the gauge measurements over 12 lakes in four countries. The performance of each retracker was assessed in terms of the data missing rate, the correlation coefficient r, the bias, and the root mean square error (RMSE) between the altimetry-derived lake water level estimates and the concurrent gauge measurements. The results show that the model-free retrackers (e.g., OCOG/Ice-1/Ice) outperform the model-based retrackers for most of the missions, particularly over small lakes. Among the satellite altimetry missions, Sentinel-3 gave the best results, followed by SARAL. ENVISAT has slightly better lake water level estimates than Jason-1 and Jason-2, but its data missing rate is higher. For small lakes, ERS-1 and ERS-2 missions provided more accurate lake water level estimates than the TOPEX/Poseidon mission. In contrast, for large lakes, TOPEX/Poseidon is a better option due to its lower data missing rate and shorter repeat cycle. GeoSat and GeoSat Follow-On (GFO) both have an extremely high data missing rate of lake water level estimates. Although several contemporary radar altimetry missions provide more accurate lake level estimates than GFO, GeoSat was the sole radar altimetry mission, between 1985 and 1990, that provided the lake water level estimates. With a full consideration of the performance and the operational duration, the best strategy for constructing long-term lake water level records should be a two-step bias correction and normalization procedure. In the first step, use Jason-2 as the initial reference to estimate the systematic biases with TOPEX/Poseidon, Jason-1, and Jason-3 and then normalize them to form a consistent TOPEX/Poseidon–Jason series. Then, use the TOPEX/Poseidon–Jason series as the reference to estimate and remove systematic biases with other radar altimetry missions to construct consistent long-term lake water level series for ungauged lakes.


2011 ◽  
pp. 798-814
Author(s):  
Nashon Juma Adero ◽  
John Bosco Kyalo Kiema

The continuing decline in lake water levels is both a concern and daunting challenge to scientists and policymakers in this era, demanding a rethinking of technological and policy interventions in the context of broader political and socio-economic realities. It is self-evident that diverse factors interact in space and time in complex dynamics to cause these water-level changes. However, the major question demanding sound answers is how these factors interact and by what magnitude they affect lake water balance with time. This chapter uses Lake Victoria’s hydrological system to shed light on the extensive and flexible modelling and simulation capabilities availed by modern computer models to understand the bigger picture of water balance dynamics. The study used the 1950-2000 hydrological data and riparian population growth to develop a dynamic simulation model for the lake’s water level. The intuitive structure of the model provided clear insights into the combined influence of the main drivers of the lake’s water balance. The falling lake water levels appeared to be mainly due to dam outflows at the outlet and reduced rainfall over the lake. The ensuing conclusions stressed the need for checks against over-release of lake water for hydropower production and measures for sustainable land and water management in the entire basin.


2020 ◽  
Vol 77 (11) ◽  
pp. 1836-1845
Author(s):  
K. Martin Perales ◽  
Catherine L. Hein ◽  
Noah R. Lottig ◽  
M. Jake Vander Zanden

Climate change is altering hydrologic regimes, with implications for lake water levels. While lakes within lake districts experience the same climate, lakes may exhibit differential climate vulnerability regarding water level response to drought. We took advantage of a recent drought (∼2005–2010) and estimated changes in lake area, water level, and shoreline position on 47 lakes in northern Wisconsin using high-resolution orthoimagery and hypsographic curves. We developed a model predicting water level response to drought to identify characteristics of the most vulnerable lakes in the region, which indicated that low-conductivity seepage lakes found high in the landscape, with little surrounding wetland and highly permeable soils, showed the greatest water level declines. To explore potential changes in the littoral zone, we estimated coarse woody habitat (CWH) loss during the drought and found that drainage lakes lost 0.8% CWH while seepage lakes were disproportionately impacted, with a mean loss of 40% CWH. Characterizing how lakes and lake districts respond to drought will further our understanding of how climate change may alter lake ecology via water level fluctuations.


2011 ◽  
Vol 75 (3) ◽  
pp. 430-437 ◽  
Author(s):  
Liisa Nevalainen ◽  
Kaarina Sarmaja-Korjonen ◽  
Tomi P. Luoto

AbstractThe usability of subfossil Cladocera assemblages in reconstructing long-term changes in lake level was examined by testing the relationship between Cladocera-based planktonic/littoral (P/L) ratio and water-level inference model in a surface-sediment dataset and in a 2000-yr sediment record in Finland. The relationships between measured and inferred water levels and P/L ratios were significant in the dataset, implying that littoral taxa are primarily deposited in shallow littoral areas, while planktonic cladocerans accumulate abundantly mainly in deepwater locations. The 2000-yr water-level reconstructions based on the water-level inference model and P/L ratio corresponded closely with each other and with a previously available midge-inferred water-level reconstruction from the same core, showing a period of lower water level around AD 300–1000 and suggesting that the methods are valid for paleolimnological and -climatological use.


Author(s):  
Khaled A. Mohamed

Abu Dhabi Emirate, United Arab Emirates has a unique tidal system. Understanding the tidal hydrodynamics in Abu Dhabi waters is very important for the design of the hydraulic structures and in the marine environmental studies. The objective of this study is to investigate the tidal water levels and tidal motion in Abu Dhabi, making use of the long-term water levels available. To achieve the aim of the study, the National Energy and Water Research Center (NEWRC) of Abu Dhabi Water and Electricity Authority installed tidal gauges at different locations in Abu Dhabi waters to obtain long-term water level measurements. At present, long-term water level measurements for at least 3 years period are available at different locations in Abu Dhabi waters. Tidal analysis was carried out on the available data to determine the characteristics of the tidal wave in Abu Dhabi Emirate and to get the main tidal constituents affecting the tidal motion. The obtained tidal constituents are used in updating and improving the boundary conditions of the numerical hydrodynamic models simulating the flow pattern in Abu Dhabi waters. The set up of the water level measurement program in Abu Dhabi waters and the results of the tidal analysis are presented and discussed in the paper.


Sign in / Sign up

Export Citation Format

Share Document