scholarly journals On the selection of precipitation products for the regionalisation of hydrological model parameters

2021 ◽  
Vol 25 (11) ◽  
pp. 5805-5837
Author(s):  
Oscar M. Baez-Villanueva ◽  
Mauricio Zambrano-Bigiarini ◽  
Pablo A. Mendoza ◽  
Ian McNamara ◽  
Hylke E. Beck ◽  
...  

Abstract. Over the past decades, novel parameter regionalisation techniques have been developed to predict streamflow in data-scarce regions. In this paper, we examined how the choice of gridded daily precipitation (P) products affects the relative performance of three well-known parameter regionalisation techniques (spatial proximity, feature similarity, and parameter regression) over 100 near-natural catchments with diverse hydrological regimes across Chile. We set up and calibrated a conceptual semi-distributed HBV-like hydrological model (TUWmodel) for each catchment, using four P products (CR2MET, RF-MEP, ERA5, and MSWEPv2.8). We assessed the ability of these regionalisation techniques to transfer the parameters of a rainfall-runoff model, implementing a leave-one-out cross-validation procedure for each P product. Despite differences in the spatio-temporal distribution of P, all products provided good performance during calibration (median Kling–Gupta efficiencies (KGE′s) > 0.77), two independent verification periods (median KGE′s >0.70 and 0.61, for near-normal and dry conditions, respectively), and regionalisation (median KGE′s for the best method ranging from 0.56 to 0.63). We show how model calibration is able to compensate, to some extent, differences between P forcings by adjusting model parameters and thus the water balance components. Overall, feature similarity provided the best results, followed by spatial proximity, while parameter regression resulted in the worst performance, reinforcing the importance of transferring complete model parameter sets to ungauged catchments. Our results suggest that (i) merging P products and ground-based measurements does not necessarily translate into an improved hydrologic model performance; (ii) the spatial resolution of P products does not substantially affect the regionalisation performance; (iii) a P product that provides the best individual model performance during calibration and verification does not necessarily yield the best performance in terms of parameter regionalisation; and (iv) the model parameters and the performance of regionalisation methods are affected by the hydrological regime, with the best results for spatial proximity and feature similarity obtained for rain-dominated catchments with a minor snowmelt component.

2021 ◽  
Author(s):  
Oscar M. Baez-Villanueva ◽  
Mauricio Zambrano-Bigiarini ◽  
Pablo A. Mendoza ◽  
Ian McNamara ◽  
Hylke E. Beck ◽  
...  

Abstract. Over the past years, novel parameter regionalisation techniques have been developed to predict streamflow in data-scarce regions. In this paper, we examined how the choice of gridded daily precipitation (P) products affects individual catchment calibration and verification, as well as the relative performance of three well-known regionalisation techniques (spatial proximity, feature similarity, and parameter regression) over 100 near-natural catchments with diverse hydrological regimes across Chile. We configured and calibrated a conceptual semi-distributed HBV-like hydrological model for each catchment, using four P products (ERA5, MSWEPv2.8, RF-MEPv2, and CR2MET), and two objective functions. The three regionalisation techniques were applied and evaluated for each combination of P product and objective function, using a leave-one-out cross-validation procedure. Despite differences in the spatio-temporal distribution of P quantities, all P products provided good performance during calibration (median KGE's > 0.77), two independent verification periods (median KGE's > 0.70 and 0.61, for near normal and dry conditions, respectively), and regionalisation results (with median KGE's for the best method ranging from 0.56 to 0.63). Our results suggest that model calibration is able to compensate, to some extent, differences between forcing datasets, and that the spatial resolution of P products does not substantially affect the regionalisation performance. Overall, feature similarity provided the best results, followed closely by spatial proximity, while parameter regression performed the worst, thus reinforcing the importance of transferring complete parameter sets to ungauged catchments. Our results suggest that: i) merging P products and ground-based measurements does not necessarily translate into an improved hydrological modelling performance; ii) a P product that provides the best individual model performance during calibration and verification does not necessarily provide the best performance in terms of parameter regionalisation; and iii) the hydrological regime affects the performance of regionalisation methods, with rain-dominated catchments with a snow component performing the best over Chile for spatial proximity and feature similarity.


2021 ◽  
Vol 13 (20) ◽  
pp. 11393
Author(s):  
Cenk Donmez ◽  
Ahmet Cilek ◽  
Carsten Paul ◽  
Suha Berberoglu

Hydrological modelling is the most common way to investigate the spatial and temporal distribution of regional water resources. The reliability and uncertainty of a model depend on the efficient calibration of hydrological parameters. However, in complex regions where several subcatchments are defined, calibration of parameters is often difficult due to a lack of observed data. The transposability of hydrological models is of critical importance for assessing hydrological effects of land use and climatic changes in ungauged watersheds. Our study implemented a Proxy-Catchment Differential Split-Sample (PBDSS) strategy to assess the transposability of the conceptual hydrological model J2000 in three different subcatchments with similar physiographic conditions in Western Turkey. For dry and wet scenarios, the model was calibrated and validated for five years (2013–2017) in two selected catchments (Kayirli and Ulubey). Afterwards, it was validated by predicting the streamflow in the Amasya catchment, which has similar physical and climatic characteristics. The approach comprises transferring J2000 model parameters between different catchments, adjusting parameters to reflect the prevailing catchment characteristics, and validating without calibration. The objective functions showed a reliable model performance with Nash–Sutcliffe Efficiency (E) ranging from 0.72 to 0.82 when predicting streamflow in the study subcatchments for wet and dry conditions. An uncertainty analysis showed good agreement between the ensemble mean and measured runoff, indicating that the sensitive parameters can be used to estimate discharge in ungauged catchments. Therefore, the J2000 model can be considered adequate in its transposability to physically similar subcatchments for simulating daily streamflow.


2007 ◽  
Vol 11 (2) ◽  
pp. 703-710 ◽  
Author(s):  
A. Bárdossy

Abstract. The parameters of hydrological models for catchments with few or no discharge records can be estimated using regional information. One can assume that catchments with similar characteristics show a similar hydrological behaviour and thus can be modeled using similar model parameters. Therefore a regionalisation of the hydrological model parameters on the basis of catchment characteristics is plausible. However, due to the non-uniqueness of the rainfall-runoff model parameters (equifinality), a workflow of regional parameter estimation by model calibration and a subsequent fit of a regional function is not appropriate. In this paper a different approach for the transfer of entire parameter sets from one catchment to another is discussed. Parameter sets are considered as tranferable if the corresponding model performance (defined as the Nash-Sutclife efficiency) on the donor catchment is good and the regional statistics: means and variances of annual discharges estimated from catchment properties and annual climate statistics for the recipient catchment are well reproduced by the model. The methodology is applied to a set of 16 catchments in the German part of the Rhine catchments. Results show that the parameters transfered according to the above criteria perform well on the target catchments.


2013 ◽  
Vol 10 (1) ◽  
pp. 375-409 ◽  
Author(s):  
J. Parajka ◽  
A. Viglione ◽  
M. Rogger ◽  
J. L. Salinas ◽  
M. Sivapalan ◽  
...  

Abstract. The objective of this assessment is to compare studies predicting runoff hydrographs in ungauged catchments. The aim is to learn from the differences and similarities between catchments in different locations, and to interpret the differences in performance in terms of the underlying climate and landscape controls. The assessment is performed at two levels. The Level 1 assessment is a meta-analysis of 34 studies reported in the literature involving 3874 catchments. The Level 2 assessment consists of a more focused and detailed analysis of individual basins from selected studies from Level 1 in terms of how the leave-one-out cross-validation performance depends on climate and catchment characteristics as well as on the chosen regionalisation method. The results indicate that runoff hydrograph predictions in ungauged catchments tend to be more accurate in humid than in arid catchments and more accurate in large than in small catchments. The dependence of performance on elevation differs by regions and depends on how aridity varies with elevation and air temperature. The effect of parameter regionalisation method on model performance differs between studies. However, there is a tendency towards a somewhat lower performance of regressions than other methods in those studies that apply different methods in the same region. In humid catchments spatial proximity and similarity methods perform best while in arid catchments similarity and parameter regression methods perform slightly better. For studies with a large number of catchments (dense stream gauge network) there is a tendency for spatial proximity and geostatistics to perform better than regression or regionalisation based on simple averaging of model parameters from gauged catchments. There was no clear relationship between predictive performance and the number of regionalised model parameters. The implications of the findings are discussed in the context of model building.


2013 ◽  
Vol 17 (5) ◽  
pp. 1783-1795 ◽  
Author(s):  
J. Parajka ◽  
A. Viglione ◽  
M. Rogger ◽  
J. L. Salinas ◽  
M. Sivapalan ◽  
...  

Abstract. The objective of this assessment is to compare studies predicting runoff hydrographs in ungauged catchments. The aim is to learn from the differences and similarities between catchments in different locations, and to interpret the differences in performance in terms of the underlying climate and landscape controls. The assessment is performed at two levels. The Level 1 assessment is a meta-analysis of 34 studies reported in the literature involving 3874 catchments. The Level 2 assessment consists of a more focused and detailed analysis of individual basins from selected studies from Level 1 in terms of how the leave-one-out cross-validation performance depends on climate and catchment characteristics as well as on the chosen regionalisation method. The results indicate that runoff-hydrograph predictions in ungauged catchments tend to be more accurate in humid than in arid catchments and more accurate in large than in small catchments. The dependence of performance on elevation differs by regions and depends on how aridity varies with elevation and air temperature. The effect of the parameter regionalisation method on model performance differs between studies. However, there is a tendency towards a somewhat lower performance of regressions than other methods in those studies that apply different methods in the same region. In humid catchments spatial proximity and similarity methods perform best while in arid catchments similarity and parameter regression methods perform slightly better. For studies with a large number of catchments (dense stream gauge network) there is a tendency for spatial proximity and geostatistics to perform better than regression or regionalisation based on simple averaging of model parameters from gauged catchments. There was no clear relationship between predictive performance and the number of regionalised model parameters. The implications of the findings are discussed in the context of model building.


2013 ◽  
Vol 46 (1) ◽  
pp. 26-38 ◽  
Author(s):  
Sokchhay Heng ◽  
Tadashi Suetsugi

The main objective of this research is to regionalize the sediment rating curve (SRC) for subsequent sediment yield prediction in ungauged catchments (UCs) in the Lower Mekong Basin. Firstly, a power function-based SRC was fitted for 17 catchments located in different parts of the basin. According to physical characteristics of the fitted SRCs, the sediment amount observed at the catchment outlets is mainly transported by several events. This also indicates that clockwise hysteretic phenomenon of sediment transport is rather important in this basin. Secondly, after discarding two outlier catchments due to data uncertainty, the remaining 15 catchments were accounted for the assessment of model performance in UCs by means of jack-knife procedure. The model regionalization was conducted using spatial proximity approach. As a result of comparative study, the spatial proximity approach based on single donor catchment provides a better regionalization solution than the one based on multiple donor catchments. By considering the ideal alternative, a satisfactory result was obtained in almost all the modeled catchments. Finally, a regional model which is a combination of the 15 locally fitted SRCs was established for use in the basin. The model users can check the probability that the prediction results are satisfactory using the designed probability curve.


2021 ◽  
Author(s):  
Moctar Dembélé ◽  
Bettina Schaefli ◽  
Grégoire Mariéthoz

<p>The diversity of remotely sensed or reanalysis-based rainfall data steadily increases, which on one hand opens new perspectives for large scale hydrological modelling in data scarce regions, but on the other hand poses challenging question regarding parameter identification and transferability under multiple input datasets. This study analyzes the variability of hydrological model performance when (1) a set of parameters is transferred from the calibration input dataset to a different meteorological datasets and reversely, when (2) an input dataset is used with a parameter set, originally calibrated for a different input dataset.</p><p>The research objective is to highlight the uncertainties related to input data and the limitations of hydrological model parameter transferability across input datasets. An ensemble of 17 rainfall datasets and 6 temperature datasets from satellite and reanalysis sources (Dembélé et al., 2020), corresponding to 102 combinations of meteorological data, is used to force the fully distributed mesoscale Hydrologic Model (mHM). The mHM model is calibrated for each combination of meteorological datasets, thereby resulting in 102 calibrated parameter sets, which almost all give similar model performance. Each of the 102 parameter sets is used to run the mHM model with each of the 102 input datasets, yielding 10404 scenarios to that serve for the transferability tests. The experiment is carried out for a decade from 2003 to 2012 in the large and data-scarce Volta River basin (415600 km2) in West Africa.</p><p>The results show that there is a high variability in model performance for streamflow (mean CV=105%) when the parameters are transferred from the original input dataset to other input datasets (test 1 above). Moreover, the model performance is in general lower and can drop considerably when parameters obtained under all other input datasets are transferred to a selected input dataset (test 2 above). This underlines the need for model performance evaluation when different input datasets and parameter sets than those used during calibration are used to run a model. Our results represent a first step to tackle the question of parameter transferability to climate change scenarios. An in-depth analysis of the results at a later stage will shed light on which model parameterizations might be the main source of performance variability.</p><p>Dembélé, M., Schaefli, B., van de Giesen, N., & Mariéthoz, G. (2020). Suitability of 17 rainfall and temperature gridded datasets for large-scale hydrological modelling in West Africa. Hydrology and Earth System Sciences (HESS). https://doi.org/10.5194/hess-24-5379-2020</p>


2014 ◽  
Vol 18 (6) ◽  
pp. 2393-2413 ◽  
Author(s):  
H. Sellami ◽  
I. La Jeunesse ◽  
S. Benabdallah ◽  
N. Baghdadi ◽  
M. Vanclooster

Abstract. In this study a method for propagating the hydrological model uncertainty in discharge predictions of ungauged Mediterranean catchments using a model parameter regionalization approach is presented. The method is developed and tested for the Thau catchment located in Southern France using the SWAT hydrological model. Regionalization of model parameters, based on physical similarity measured between gauged and ungauged catchment attributes, is a popular methodology for discharge prediction in ungauged basins, but it is often confronted with an arbitrary criterion for selecting the "behavioral" model parameter sets (Mps) at the gauged catchment. A more objective method is provided in this paper where the transferrable Mps are selected based on the similarity between the donor and the receptor catchments. In addition, the method allows propagating the modeling uncertainty while transferring the Mps to the ungauged catchments. Results indicate that physically similar catchments located within the same geographic and climatic region may exhibit similar hydrological behavior and can also be affected by similar model prediction uncertainty. Furthermore, the results suggest that model prediction uncertainty at the ungauged catchment increases as the dissimilarity between the donor and the receptor catchments increases. The methodology presented in this paper can be replicated and used in regionalization of any hydrological model parameters for estimating streamflow at ungauged catchment.


2008 ◽  
Vol 5 (3) ◽  
pp. 1641-1675 ◽  
Author(s):  
A. Bárdossy ◽  
S. K. Singh

Abstract. The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives an unique and very best parameter vector. The parameters of hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on the half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study) for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.


2003 ◽  
Vol 5 (4) ◽  
pp. 233-244 ◽  
Author(s):  
Vincent Guinot ◽  
Philippe Gourbesville

The modelling of extreme hydrological events often suffers from a lack of available data. Physically based models are the best available modelling option in such situations, as they can in principle provide answers about the behaviour of ungauged catchments provided that the geometry and the forcings are known with sufficient accuracy. The need for calibration is therefore limited. In some situations, calibration (seen as adjusting the model parameters so that they fit the calculation as closely to the measurements as possible) is impossible. This paper presents such a situation. The MIKE SHE physically based hydrological model is used to model a flash flood over a medium-sized catchment of the Mediterranean Alps (2820 km2). An examination of a number of modelling alternatives shows that the main factor of uncertainty in the model response is the model structure (what are the dominant processes). The second most important factor is the accuracy with which the catchment geometry is represented in the model. The model results exhibit very little sensitivity to the model parameters, and therefore calibration of these parameters is found to be useless.


Sign in / Sign up

Export Citation Format

Share Document