scholarly journals Evaluating the influence of long term historical climate change on catchment hydrology – using drought and flood indices

2013 ◽  
Vol 10 (2) ◽  
pp. 2373-2428 ◽  
Author(s):  
I. B. Karlsson ◽  
T. O. Sonnenborg ◽  
K. H. Jensen ◽  
J. C. Refsgaard

Abstract. This study uses a 133 yr data set from the 1055 km2 Skjern River catchment in a western Danish catchment to evaluate: long-term past climate changes in the area; the capability of a conceptual hydrological model NAM to simulate climate change impacts on river discharge; and the occurrences of droughts and floods in a changing climate. The degree of change in the climatic variables is examined using the non-parametric Mann-Kendall test. During the last 133 yr the area has experienced a significant change in precipitation of 46% and a temperature change of 1.3 °C leading to (simulated) increases in discharge of 103% and groundwater recharge of 172%. Only a small part of the past climatic changes was found to be correlated to the climatic drivers: NAO, SCA and AMO. The NAM model was calibrated on the period 1961–1970 and showed generally an excellent match between simulated and observed discharge. The capability of the hydrological model to predict climate change impact was investigated by looking at performances outside the calibration period. The results showed a reduced model fit, especially for the modern time periods (after the 1970s), and not all hydrological changes could be explained. This might indicate that hydrological models cannot be expected to predict climate change impacts on discharge as accurately in the future, as they perform under present conditions, where they can be calibrated. The (simulated) stream discharge was subsequently analyzed using flood and drought indices based on the threshold method. The extreme signal was found to depend highly on the period chosen as reference to normal. The analysis, however, indicated enhanced amplitude of the hydrograph towards the drier extremes superimposed on the overall discharge increase leading to more relative drought periods.

2014 ◽  
Vol 18 (2) ◽  
pp. 595-610 ◽  
Author(s):  
I. B. Karlsson ◽  
T. O. Sonnenborg ◽  
K. H. Jensen ◽  
J. C. Refsgaard

Abstract. A 133 yr data set from the 1055 km2 Skjern River catchment in western Denmark has been analysed with respect to precipitation, temperature, evapotranspiration and discharge. The precipitation series have been tested and corrected using the standard normal homogeneity test and subsequently corrected for undercatch. The degree of change in the climatic variables is examined using the non-parametric Mann–Kendall test. During the last 133 yr the area has experienced a significant change in precipitation of 26% and a temperature change of 1.4°C, leading to increases in river discharge of 52% and groundwater recharge of 86%. A lumped conceptual hydrological model, NAM, was calibrated on the period 1951–1980 and showed generally an excellent match between simulated and observed discharge. The capability of the hydrological model to predict climate change impact was investigated by looking at performances outside the calibration period. The results showed a reduced model fit, especially for recent time periods (after the 1980s), and not all hydrological changes could be explained. This might indicate that hydrological models cannot be expected to predict climate change impacts on discharge as accurately in the future, compared to the performance under present conditions, where they can be calibrated. The (simulated) stream discharge was subsequently analysed using high flow and drought indices based on the threshold method. The extreme signal was found to depend highly on the period chosen as reference to normal. The analysis indicated that no significant amplitude increase of the hydrograph for both wet and dry extremes could be found superimposed on the overall discharge increase.


2021 ◽  
Vol 25 (3) ◽  
pp. 1307-1332
Author(s):  
Lieke Anna Melsen ◽  
Björn Guse

Abstract. Hydrological models are useful tools for exploring the impact of climate change. To prioritize parameters for calibration and to evaluate hydrological model functioning, sensitivity analysis can be conducted. Parameter sensitivity, however, varies over climate, and therefore climate change could influence parameter sensitivity. In this study we explore the change in parameter sensitivity for the mean discharge and the timing of the discharge, within a plausible climate change rate. We investigate whether changes in sensitivity propagate into the calibration strategy and diagnostically compare three hydrological models based on the sensitivity results. We employed three frequently used hydrological models (SAC, VIC, and HBV) and explored parameter sensitivity changes across 605 catchments in the United States by comparing GCM(RCP8.5)-forced historical and future periods. Consistent among all hydrological models and both for the mean discharge and the timing of the discharge is that the sensitivity of snow parameters decreases in the future. Which other parameters increase in sensitivity is less consistent among the hydrological models. In 45 % to 55 % of the catchments, dependent on the hydrological model, at least one parameter changes in the future in the top-5 most sensitive parameters for mean discharge. For the timing, this varies between 40 % and 88 %. This requires an adapted calibration strategy for long-term projections, for which we provide several suggestions. The disagreement among the models on the processes that become more relevant in future projections also calls for a strict evaluation of the adequacy of the model structure for long-term simulations.


2021 ◽  
pp. 108602662110316
Author(s):  
Tiziana Russo-Spena ◽  
Nadia Di Paola ◽  
Aidan O’Driscoll

An effective climate change action involves the critical role that companies must play in assuring the long-term human and social well-being of future generations. In our study, we offer a more holistic, inclusive, both–and approach to the challenge of environmental innovation (EI) that uses a novel methodology to identify relevant configurations for firms engaging in a superior EI strategy. A conceptual framework is proposed that identifies six sets of driving characteristics of EI and two sets of beneficial outcomes, all inherently tensional. Our analysis utilizes a complementary rather than an oppositional point of view. A data set of 65 companies in the ICT value chain is analyzed via fuzzy-set comparative analysis (fsQCA) and a post-QCA procedure. The results reveal that achieving a superior EI strategy is possible in several scenarios. Specifically, after close examination, two main configuration groups emerge, referred to as technological environmental innovators and organizational environmental innovators.


2021 ◽  
pp. 126814
Author(s):  
San Shing Chan ◽  
Ida Karlsson Seidenfaden ◽  
Karsten Høgh Jensen ◽  
Torben Obel Sonnenborg

2010 ◽  
Vol 278 (1712) ◽  
pp. 1661-1669 ◽  
Author(s):  
David Alonso ◽  
Menno J. Bouma ◽  
Mercedes Pascual

Climate change impacts on malaria are typically assessed with scenarios for the long-term future. Here we focus instead on the recent past (1970–2003) to address whether warmer temperatures have already increased the incidence of malaria in a highland region of East Africa. Our analyses rely on a new coupled mosquito–human model of malaria, which we use to compare projected disease levels with and without the observed temperature trend. Predicted malaria cases exhibit a highly nonlinear response to warming, with a significant increase from the 1970s to the 1990s, although typical epidemic sizes are below those observed. These findings suggest that climate change has already played an important role in the exacerbation of malaria in this region. As the observed changes in malaria are even larger than those predicted by our model, other factors previously suggested to explain all of the increase in malaria may be enhancing the impact of climate change.


Author(s):  
O. J. Kehinde ◽  
A. T. Adeboyejo

Susceptibility to ill health among aged people had been linked with climate change impacts in rapidly urbanising cities. Therefore, this study evaluates to the vulnerability of aged people to the health impacts of climate change in Ibadan, Nigeria. Data on clinically diagnosed climate related diseases (CRDs) (2000 – 2014) among aged people (>50 years) and temperature and rainfall parameters (1970 – 2007) in Ibadan were obtained and projected to year 2050. Also, the relationship between the climatic parameters and incidence of the five most prevalent CRDs were analysed using multiple regression. The increasing trend of mean maximum temperature (r = 0.47) and rainfall (r = 0.15) is associated with incidences of hypertension (34.4%), respiratory diseases (21.2%) and diarrhoea (14.3%) among aged people (> 60 years), mostly male folk (67.2%). The linear composite of disease communalities extracted 84.0% variance of the data set with the following component scores: skin disease (0.98), hypertension (0.96), respiratory disease (0.92), diarrhoea (0.89) and malaria (0.45). Further, CRDs (R2 = 27%, p = 0.012) in Ibadan among aged people could be significantly attributed to influences of climatic parameters. The study suggests building aged peoples’ resilience to emanating impacts through health and nutritional improvement programs, and re-introduction of neighbourhood parks and gardens.


2015 ◽  
Vol 105 (5) ◽  
pp. 232-236 ◽  
Author(s):  
Raymond Guiteras ◽  
Amir Jina ◽  
A. Mushfiq Mobarak

A burgeoning “Climate-Economy” literature has uncovered many effects of changes in temperature and precipitation on economic activity, but has made considerably less progress in modeling the effects of other associated phenomena, like natural disasters. We develop new, objective data on floods, focusing on Bangladesh. We show that rainfall and self-reported exposure are weak proxies for true flood exposure. These data allow us to study adaptation, giving accurate measures of both long-term averages and short term variation in exposure. This is important in studying climate change impacts, as people will not only experience new exposures, but also experience them differently.


2021 ◽  
Author(s):  
Vazken Andréassian ◽  
Léonard Santos ◽  
Torben Sonnenborg ◽  
Alban de Lavenne ◽  
Göran Lindström ◽  
...  

<p>Hydrological models are increasingly used under evolving climatic conditions. They should thus be evaluated regarding their temporal transferability (application in different time periods) and extrapolation capacity (application beyond the range of known past conditions). In theory, parameters of hydrological models are independent of climate. In practice, however, many published studies based on the Split-Sample Test (Klemeš, 1986), have shown that model performances decrease systematically when it is used out of its calibration period. The RAT test proposed here aims at evaluating model robustness to a changing climate by assessing potential undesirable dependencies of hydrological model performances to climate variables. The test compares, over a long data period, the annual value of several climate variables (temperature, precipitation and aridity index) and the bias of the model over each year. If a significant relation exists between the climatic variable and the bias, the model is not considered to be robust to climate change on the catchment. The test has been compared to the Generalized Split-Sample Test (Coron et al., 2012) and showed similar results.</p><p>Here, we report on a large scale application of the test for three hydrological models with different level of complexity (GR6J, HYPE, MIKE-SHE) on a data set of 352 catchments in Denmark, France and Sweden. The results show that the test behaves differently given the evaluated variable (be temperature, precipitation or aridity) and the hydrological characteristics of each catchment. They also show that, although of different level of complexity, the robustness of the three models is similar on the overall data set. However, they are not robust on the same catchments and, then, are not sensitive to the same hydrological characteristics. This example highlights the applicability of the RAT test regardless of the model set-up and calibration procedure and its ability to provide a first evaluation of the model robustness to climate change.</p><p> </p><p><strong>References</strong></p><p>Coron, L., V. Andréassian, C. Perrin, J. Lerat, J. Vaze, M. Bourqui, and F. Hendrickx, 2012. Crash testing hydrological models in contrasted climate conditions: An experiment on 216 Australian catchments, Water Resour. Res., 48, W05552, doi:10.1029/2011WR011721</p><p>Klemeš, V., 1986. Operational testing of hydrological simulation models, Hydrol. Sci. J., 31, 13–24, doi:10.1080/02626668609491024</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document