scholarly journals Coupled prediction of flood response and debris flow initiation during warm and cold season events in the Southern Appalachians, USA

2013 ◽  
Vol 10 (7) ◽  
pp. 8365-8419 ◽  
Author(s):  
J. Tao ◽  
A. P. Barros

Abstract. Debris flows associated with rainstorms are a frequent and devastating hazard in the Southern Appalachians in the United States. Whereas warm season events are clearly associated with heavy rainfall intensity, the same cannot be said for the cold season events. Instead, there is a relationship between large (cumulative) rainfall events independently of season, and thus hydrometeorological regime, and debris flows. This suggests that the dynamics of subsurface hydrologic processes play an important role as a trigger mechanism, specifically through soil moisture redistribution by interflow. The first objective of this study is to investigate this hypothesis. The second objective is to assess the physical basis for a regional coupled flood prediction and debris flow warning system. For this purpose, uncalibrated model simulations of well-documented debris flows in headwater catchments of the Southern Appalachians using a 3-D surface-groundwater hydrologic model coupled with slope stability models are examined in detail. Specifically, we focus on two vulnerable headwater catchments that experience frequent debris flows, the Big Creek and the Jonathan Creek in the Upper Pigeon River Basin, North Carolina, and three distinct weather systems: an extremely heavy summertime convective storm in 2011; a persistent winter storm lasting several days; and a severe winter storm in 2009. These events were selected due to the optimal availability of rainfall observations, availability of detailed field surveys of the landslides shortly after they occurred, which can be used to evaluate model predictions, and because they are representative of events that cause major economic losses in the region. The model results substantiate that interflow is a useful prognostic of conditions necessary for the initiation of slope instability, and should therefore be considered explicitly in landslide hazard assessments. Moreover, the relationships between slope stability and interflow are strongly modulated by the topography and catchment specific geomorphologic features that determine subsurface flow convergence zones. The three case-studies demonstrate the value of coupled prediction of flood response and debris flow initiation potential in the context of developing a regional hazard warning system.

2014 ◽  
Vol 18 (1) ◽  
pp. 367-388 ◽  
Author(s):  
J. Tao ◽  
A. P. Barros

Abstract. Debris flows associated with rainstorms are a frequent and devastating hazard in the Southern Appalachians in the United States. Whereas warm-season events are clearly associated with heavy rainfall intensity, the same cannot be said for the cold-season events. Instead, there is a relationship between large (cumulative) rainfall events independently of season, and thus hydrometeorological regime, and debris flows. This suggests that the dynamics of subsurface hydrologic processes play an important role as a trigger mechanism, specifically through soil moisture redistribution by interflow. We further hypothesize that the transient mass fluxes associated with the temporal-spatial dynamics of interflow govern the timing of shallow landslide initiation, and subsequent debris flow mobilization. The first objective of this study is to investigate this relationship. The second objective is to assess the physical basis for a regional coupled flood prediction and debris flow warning system. For this purpose, uncalibrated model simulations of well-documented debris flows in headwater catchments of the Southern Appalachians using a 3-D surface–groundwater hydrologic model coupled with slope stability models are examined in detail. Specifically, we focus on two vulnerable headwater catchments that experience frequent debris flows, the Big Creek and the Jonathan Creek in the Upper Pigeon River Basin, North Carolina, and three distinct weather systems: an extremely heavy summertime convective storm in 2011; a persistent winter storm lasting several days; and a severe winter storm in 2009. These events were selected due to the optimal availability of rainfall observations; availability of detailed field surveys of the landslides shortly after they occurred, which can be used to evaluate model predictions; and because they are representative of events that cause major economic losses in the region. The model results substantiate that interflow is a useful prognostic of conditions necessary for the initiation of slope instability, and should therefore be considered explicitly in landslide hazard assessments. Moreover, the relationships between slope stability and interflow are strongly modulated by the topography and catchment-specific geomorphologic features that determine subsurface flow convergence zones. The three case studies demonstrate the value of coupled prediction of flood response and debris flow initiation potential in the context of developing a regional hazard warning system.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 750
Author(s):  
Antonio Pasculli ◽  
Jacopo Cinosi ◽  
Laura Turconi ◽  
Nicola Sciarra

The current climate change could lead to an intensification of extreme weather events, such as sudden floods and fast flowing debris flows. Accordingly, the availability of an early-warning device system, based on hydrological data and on both accurate and very fast running mathematical-numerical models, would be not only desirable, but also necessary in areas of particular hazard. To this purpose, the 2D Riemann–Godunov shallow-water approach, solved in parallel on a Graphical-Processing-Unit (GPU) (able to drastically reduce calculation time) and implemented with the RiverFlow2D code (version 2017), was selected as a possible tool to be applied within the Alpine contexts. Moreover, it was also necessary to identify a prototype of an actual rainfall monitoring network and an actual debris-flow event, beside the acquisition of an accurate numerical description of the topography. The Marderello’s basin (Alps, Turin, Italy), described by a 5 × 5 m Digital Terrain Model (DTM), equipped with five rain-gauges and one hydrometer and the muddy debris flow event that was monitored on 22 July 2016, were identified as a typical test case, well representative of mountain contexts and the phenomena under study. Several parametric analyses, also including selected infiltration modelling, were carried out in order to individuate the best numerical values fitting the measured data. Different rheological options, such as Coulomb-Turbulent-Yield and others, were tested. Moreover, some useful general suggestions, regarding the improvement of the adopted mathematical modelling, were acquired. The rapidity of the computational time due to the application of the GPU and the comparison between experimental data and numerical results, regarding both the arrival time and the height of the debris wave, clearly show that the selected approaches and methodology can be considered suitable and accurate tools to be included in an early-warning system, based at least on simple acoustic and/or light alarms that can allow rapid evacuation, for fast flowing debris flows.


2018 ◽  
Vol 22 (6) ◽  
pp. 3493-3513 ◽  
Author(s):  
Karin Mostbauer ◽  
Roland Kaitna ◽  
David Prenner ◽  
Markus Hrachowitz

Abstract. Debris flows represent frequent hazards in mountain regions. Though significant effort has been made to predict such events, the trigger conditions as well as the hydrologic disposition of a watershed at the time of debris flow occurrence are not well understood. Traditional intensity-duration threshold techniques to establish trigger conditions generally do not account for distinct influences of rainfall, snowmelt, and antecedent moisture. To improve our knowledge on the connection between debris flow initiation and the hydrologic system at a regional scale, this study explores the use of a semi-distributed conceptual rainfall–runoff model, linking different system variables such as soil moisture, snowmelt, or runoff with documented debris flow events in the inner Pitztal watershed, Austria. The model was run on a daily basis between 1953 and 2012. Analysing a range of modelled system state and flux variables at days on which debris flows occurred, three distinct dominant trigger mechanisms could be clearly identified. While the results suggest that for 68 % (17 out of 25) of the observed debris flow events during the study period high-intensity rainfall was the dominant trigger, snowmelt was identified as the dominant trigger for 24 % (6 out of 25) of the observed debris flow events. In addition, 8 % (2 out of 25) of the debris flow events could be attributed to the combined effects of low-intensity, long-lasting rainfall and transient storage of this water, causing elevated antecedent soil moisture conditions. The results also suggest a relatively clear temporal separation between the distinct trigger mechanisms, with high-intensity rainfall as a trigger being limited to mid- and late summer. The dominant trigger in late spring/early summer is snowmelt. Based on the discrimination between different modelled system states and fluxes and, more specifically, their temporally varying importance relative to each other, this exploratory study demonstrates that already the use of a relatively simple hydrological model can prove useful to gain some more insight into the importance of distinct debris flow trigger mechanisms. This highlights in particular the relevance of snowmelt contributions and the switch between mechanisms during early to mid-summer in snow-dominated systems.


Author(s):  
Marisa C. Palucis ◽  
Thomas P. Ulizio ◽  
Michael P. Lamb

Steep, rocky landscapes often produce large sediment yields and debris flows following wildfire. Debris flows can initiate from landsliding or rilling in soil-mantled portions of the landscape, but there have been few direct observations of debris flow initiation in steep, rocky portions of the landscape that lack a thick, continuous soil mantle. We monitored a steep, first-order catchment that burned in the San Gabriel Mountains, California, USA. Following fire, but prior to rainfall, much of the hillslope soil mantle was removed by dry ravel, exposing bedrock and depositing ∼0.5 m of sandy sediment in the channel network. During a one-year recurrence rainstorm, debris flows initiated in the channel network, evacuating the accumulated dry ravel and underlying cobble bed, and scouring the channel to bedrock. The channel abuts a plowed terrace, which allowed a complete sediment budget, confirming that ∼95% of sediment deposited in a debris flow fan matched that evacuated from the channel, with a minor rainfall-driven hillslope contribution. Subsequent larger storms produced debris flows in higher-order channels but not in the first-order channel because of a sediment supply limitation. These observations are consistent with a model for post-fire ravel routing in steep, rocky landscapes where sediment was sourced by incineration of vegetation dams—following ∼30 years of hillslope soil production since the last fire—and transported downslope by dry processes, leading to a hillslope sediment-supply limitation and infilling of low-order channels with relatively fine sediment. Our observations of debris flow initiation are consistent with failure of the channel bed alluvium due to grain size reduction from dry ravel deposits that allowed high Shields numbers and mass failure even for moderate intensity rainstorms.


2016 ◽  
Vol 16 (2) ◽  
pp. 509-528 ◽  
Author(s):  
S. Jeffrey Underwood ◽  
Michael D. Schultz ◽  
Metteo Berti ◽  
Carlo Gregoretti ◽  
Alessandro Simoni ◽  
...  

Abstract. The Dolomite Alps of northeastern Italy experience debris flows with great frequency during the summer months. An ample supply of unconsolidated material on steep slopes and a summer season climate regime characterized by recurrent thunderstorms combine to produce an abundance of these destructive hydro-geologic events. In the past, debris flow events have been studied primarily in the context of their geologic and geomorphic characteristics. The atmospheric contribution to these mass-wasting events has been limited to recording rainfall and developing intensity thresholds for debris mobilization. This study aims to expand the examination of atmospheric processes that preceded both locally intense convective rainfall (LICR) and debris flows in the Dolomite region. 500 hPa pressure level plots of geopotential heights were constructed for a period of 3 days prior to debris flow events to gain insight into the synoptic-scale processes which provide an environment conducive to LICR in the Dolomites. Cloud-to-ground (CG) lightning flash data recorded at the meso-scale were incorporated to assess the convective environment proximal to debris flow source regions. Twelve events were analyzed and from this analysis three common synoptic-scale circulation patterns were identified. Evaluation of CG flashes at smaller spatial and temporal scales illustrated that convective processes vary in their production of CF flashes (total number) and the spatial distribution of flashes can also be quite different between events over longer periods. During the 60 min interval immediately preceding debris flow a majority of cases exhibited spatial and temporal colocation of LICR and CG flashes. Also a number of CG flash parameters were found to be significantly correlated to rainfall intensity prior to debris flow initiation.


2021 ◽  
Author(s):  
Zheng Wang ◽  
Ningsheng Chen ◽  
Guisheng Hu ◽  
Yong Zhang ◽  
Genxu Wang ◽  
...  

Abstract Mount Gonggais located in the east of the Qinghai–Tibet Plateau; many debris flows have occurred in small basins with a small glacier cover or snow cover in this area. The hydrometeorological conditions that caused debris flows in this region are complex, making forecasting and early warning difficult. Previous studies for these small-glacial-covered basins have primarily considered rainfall as the only inducing factor of debris flows, and often the effects of temperature are neglected. Thus, we carried out a probabilistic analysis of variables derived from hydrometeorological factors for the Mount Gongga region, Sichuan, China, where debris flows were recorded on 14 days between 1988 and 2019. By analyzing hydrological characteristics when debris flows occurred, three distinct dominant trigger types could be identified. The results show that 7 (50%) of the observed debris flow events during the study period, high-intensity rainfall was the dominant trigger, snowmelt by high temperature was identified as the dominant trigger for 2 (14%). Furthermore, 5 (36%) debris flow events could be attributed to the combined effects of long-lasting (or short-medium) rainfall and sustained higher temperatures. We find that the differences between the trigger types are statistically significant, and a susceptibility prediction differentiating between trigger types can outperform simple rainfall-only situations. This study contributes to an improved understanding of the hydrometeorological impact on debris flow initiation in high elevation watersheds.


2021 ◽  
Author(s):  
Li Ning ◽  
Tang Chuan ◽  
Zhang Xianzheng ◽  
Chang Ming ◽  
Shu Zhile ◽  
...  

Abstract On August 20, 2019, at 2 a.m., a disastrous debris flow occurred in Chediguan gully in Yinxing town, China. The debris flow destroyed the drainage groove and the bridge at the exit of the gully. In addition, the debris flow temporarily blocked the Minjiang River during the flood peak, flooding the Taipingyi hydropower station 200 m upstream and leaving two plant workers missing. To further understand the activity of the debris flow after the Wenchuan earthquake, the characteristics of this debris flow event were studied. Eleven years after the Wenchuan earthquake, a disastrous debris flow still occurred in the Chediguan catchment, causing more severe losses than those of earlier debris flows. In this paper, the formation mechanism and dynamic characteristics of this debris flow event are analysed based on a drone survey, high-definition remote sensing interpretations and other means. The catastrophic debris flow event indicates that debris flows in the Wenchuan earthquake area are still active. A large amount of dredging work in the main gully could effectively reduce the debris flow risk in the gully. In addition, it is also important to repair or rebuild damaged mitigation measures and to establish a real-time monitoring and early warning system for the high-risk gully.


2015 ◽  
Vol 3 (9) ◽  
pp. 5717-5775
Author(s):  
S. J. Underwood ◽  
M. D. Schultz ◽  
M. Berti ◽  
C. Gregoretti ◽  
A. Simoni ◽  
...  

Abstract. The Dolomite Alps of northeastern Italy experience debris flows with great frequency during the summer months. An ample supply of unconsolidated material on steep slopes and a summer season climate regime characterized by recurrent thunderstorms combine to produce an abundance of these destructive hydrogeologic events. In the past debris flow events have been studied primarily in the context of their geologic and geomorphic characteristics. The atmospheric contribution to these mass wasting events has been limited to recording rainfall and developing intensity thresholds for debris mobilization. This study aims to expand the examination of atmospheric processes that preceded both locally intense convective rainfall (LICR) and debris flows in the Dolomite region. 500 hPa pressure level plots of geopotential heights were constructed for a period of three days prior to debris flow events to gain insight into the synoptic scale processes which provide an environment conducive to LICR in the Dolomites. Cloud-to-ground (CG) lightning flash data recorded at the meso-scale were incorporated to assess the convective environment proximal to debris flow source regions. Twelve events were analyzed and from this analysis three common synoptic scale circulation patterns were identified. Evaluation of CG flashes at smaller spatial and temporal scales illustrated that convective processes vary in their production of CG flashes (total number) and the spatial distribution of flashes can also be quite different between events over longer periods. During the 60 min interval immediately preceding debris flow a majority of cases exhibited spatial and temporal collocation of LICR and CG flashes. Also a number of CG flash parameters were found to be significantly correlated to rainfall intensity prior to debris flow initiation.


2012 ◽  
Vol 12 (10) ◽  
pp. 3059-3073 ◽  
Author(s):  
N. K. Meyer ◽  
A. V. Dyrrdal ◽  
R. Frauenfelder ◽  
B. Etzelmüller ◽  
F. Nadim

Abstract. Debris flows, triggered by extreme precipitation events and rapid snow melt, cause considerable damage to the Norwegian infrastructure every year. To define intensity-duration (ID) thresholds for debris flow initiation critical water supply conditions arising from intensive rainfall or snow melt were assessed on the basis of daily hydro-meteorological information for 502 documented debris flow events. Two threshold types were computed: one based on absolute ID relationships and one using ID relationships normalized by the local precipitation day normal (PDN). For each threshold type, minimum, medium and maximum threshold values were defined by fitting power law curves along the 10th, 50th and 90th percentiles of the data population. Depending on the duration of the event, the absolute threshold intensities needed for debris flow initiation vary between 15 and 107 mm day−1. Since the PDN changes locally, the normalized thresholds show spatial variations. Depending on location, duration and threshold level, the normalized threshold intensities vary between 6 and 250 mm day−1. The thresholds obtained were used for a frequency analysis of over-threshold events giving an estimation of the exceedance probability and thus potential for debris flow events in different parts of Norway. The absolute thresholds are most often exceeded along the west coast, while the normalized thresholds are most frequently exceeded on the west-facing slopes of the Norwegian mountain ranges. The minimum thresholds derived in this study are in the range of other thresholds obtained for regions with a climate comparable to Norway. Statistics reveal that the normalized threshold is more reliable than the absolute threshold as the former shows no spatial clustering of debris flows related to water supply events captured by the threshold.


2021 ◽  
Author(s):  
Elijah Orland ◽  
Dalia Kirschbaum ◽  
Thomas Stanley

<p>As the risk of wildfires increases worldwide, burned steeplands are vulnerable to the secondary hazard of widespread sediment mobilization through debris flows. Following an initial burn, sediment and soil previously restrained by vegetation are no longer consolidated, allowing for easy mobilization into channels and along steep hillslopes through runoff.  Sufficiently powerful rainfall incorporates entrained material into turbulent flows and serves as the primary trigger for debris flow initiation. There is thus an ongoing need to establish the relationship between rainfall and debris flow initiation based on a variety of spatiotemporal preconditions. Previous work establishes regional and local thresholds to constrain the effect of rainfall in recently burned areas, but no empirical or numerical solution has worldwide application. Building from regionally-based efforts in the U.S., this work considers how remote sensing data can be applied to better approximate the post-fire debris flow hazards worldwide using freely available global datasets and software. Our work assesses the utility of remote sensing resources for analyzing burn characteristics, topography, rainfall intensity/duration, and, thus, debris flow initiation. Early results show that global observations are sufficient to delineate background rainfall rates from storms likely to cause debris flows across a variety of burn severity and topographic conditions. However, the dearth of publicly-available post-fire debris flow inventories globally limit the ability to test how the model framework performs within different climatologic and morphologic areas. This work will present preliminary analysis over the Western United States and demonstrate the feasibility of a global, near-real time model to provide situational awareness of potential hazards within recently burned areas worldwide. Future work will also consider how global or regional precipitation forecasts may increase the lead time for improved early warning of these hazards.</p>


Sign in / Sign up

Export Citation Format

Share Document