scholarly journals Hydrologic calibration of paired watersheds using a MOSUM approach

2015 ◽  
Vol 12 (1) ◽  
pp. 245-279 ◽  
Author(s):  
H. Ssegane ◽  
D. M. Amatya ◽  
A. Muwamba ◽  
G. M. Chescheir ◽  
T. Appelboom ◽  
...  

Abstract. Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managed loblolly pine (Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum), 14–15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.

2003 ◽  
Vol 38 (4) ◽  
pp. 621-630 ◽  
Author(s):  
David R. Coyle ◽  
John T. Nowak ◽  
Christopher J. Fettig

The widespread application of intensive forest management practices throughout the southeastern U.S. has increased loblolly pine, Pinus taeda L., yields and shortened conventional rotation lengths. Fluctuations in Nantucket pine tip moth, Rhyacionia frustrana (Comstock), population density and subsequent damage levels have been linked to variations in management intensity. We examined the effects of two practices, irrigation and fertilization, on R. frustrana damage levels and pupal weights in an intensively-managed P. taeda plantation in South Carolina. Trees received intensive weed control and one of the following treatments: irrigation only, fertilization only, irrigation + fertilization, or control. Mean whole-tree tip moth damage levels ranged from <1 to 48% during this study. Damage levels differed significantly among treatments in two tip moth generations in 2001, but not 2000. Pupal weight was significantly heavier in fertilization compared to the irrigation treatment in 2000, but no significant differences were observed in 2001. Tree diameter, height, and aboveground volume were significantly greater in the irrigation + fertilization than in the irrigation treatment after two growing seasons. Our data suggest that intensive management practices that include irrigation and fertilization do not consistently increase R. frustrana damage levels and pupal weights as is commonly believed. However, tip moth suppression efforts in areas adjacent to our study may have partially reduced the potential impacts of R. frustrana on this experiment.


EDIS ◽  
2008 ◽  
Vol 2008 (3) ◽  
Author(s):  
Michael Andreu ◽  
Kevin Zobrist ◽  
Thomas Hinckley

FOR-183, a 9-page fact sheet by Michael Andreu, Kevin Zobrist, and Thomas Hinckley, reviews the literature to identify a spectrum of practices that support increased biodiversity in intensively managed loblolly pine plantations. Includes references. Published by the UF School of Forest Resources and Conservation, March 2008. Minor revision April 2017.


2003 ◽  
Vol 38 (1) ◽  
pp. 1-40 ◽  
Author(s):  
Christopher Asaro ◽  
Christopher J. Fettig ◽  
Kenneth W. McCravy ◽  
John T. Nowak ◽  
C. Wayne Berisford

The Nantucket pine tip moth, Rhyacionia frustrana (Comstock), an important pest of intensively-managed loblolly pine, Pinus taeda L., was first noted in the scientific literature in 1879. This pest gained notoriety with the establishment of loblolly pine monocultures throughout the southeastern United States during the 1950s. Current intensive forest management practices have led to increasing interest in managing this insect. Herein we review all Nantucket pine tip moth literature (1879–2002) by addressing the following subjects: biology and life history, natural enemies, sampling methodologies, site and stand influences, economic impact, and management strategies. Further, we provide management recommendations in the form of a decision chart that is based upon the best available information to date and our collective experience.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Matthew M. Marshall ◽  
Kristen E. Lucia ◽  
Jessica A. Homyack ◽  
Darren A. Miller ◽  
Matina C. Kalcounis-Rueppell

Plant-based feedstocks have long been considered viable, potential sources for biofuels. However, concerns regarding production effects may outweigh gains like carbon savings. Additional information is needed to understand environmental effects of growing feedstocks, including effects on wildlife communities and populations. We used a randomized and replicated experimental design to examine initial effects of biofuel feedstock treatment options, including removal of woody biomass after clearcutting and intercropping switchgrass (Panicum virgatum), on rodents to 2 years post-treatment in regenerating pine plantations in North Carolina, USA. Rodent community composition did not change with switchgrass production or residual biomass removal treatments. Further, residual biomass removal had no influence on rodent population abundances. However,Peromyscus leucopuswas found in the greatest abundance and had the greatest survival in treatments without switchgrass. In contrast, abundance of invasiveMus musculuswas greatest in switchgrass treatments. Other native species, such asSigmodon hispidus, were not influenced by the presence of switchgrass. Our results suggest that planting of switchgrass, but not biomass removal, had species-specific effects on rodents at least 2 years post-planting in an intensively managed southern pine system. Determining ecological mechanisms underlying our observed species associations with switchgrass will be integral for understanding long-term sustainability of biofuels production in southern pine forest.


2021 ◽  
pp. 205301962110075
Author(s):  
Ilan Stavi ◽  
Joana Roque de Pinho ◽  
Anastasia K Paschalidou ◽  
Susana B Adamo ◽  
Kathleen Galvin ◽  
...  

During the last decades, pastoralist, and agropastoralist populations of the world’s drylands have become exceedingly vulnerable to regional and global changes. Specifically, exacerbated stressors imposed on these populations have adversely affected their food security status, causing humanitarian emergencies and catastrophes. Of these stressors, climate variability and change, land-use and management practices, and dynamics of human demography are of a special importance. These factors affect all four pillars of food security, namely, food availability, access to food, food utilization, and food stability. The objective of this study was to critically review relevant literature to assess the complex web of interrelations and feedbacks that affect these factors. The increasing pressures on the world’s drylands necessitate a comprehensive analysis to advise policy makers regarding the complexity and linkages among factors, and to improve global action. The acquired insights may be the basis for alleviating food insecurity of vulnerable dryland populations.


Author(s):  
Temesgen Mulualem ◽  
Enyew Adgo ◽  
Derege Tsegaye Meshesha ◽  
Atsushi Tsunekawa ◽  
Nigussie Haregeweyn ◽  
...  

2001 ◽  
Vol 25 (2) ◽  
pp. 69-74 ◽  
Author(s):  
Bruce E. Borders ◽  
Robert L. Bailey

Abstract With mean annual increments up to 5.4 cords/ac/yr, six loblolly pine (Pinus taeda L.) research sites in Georgia produced yields on par with other results from intensively managed loblolly plantations around the world. Cultural treatments in the Georgia study include complete control of vegetation other than the planted pines with multiple applications of herbicide, annual fertilization, the combination of complete vegetation control and annual fertilization, and an intensive mechanical site preparation treatment. Complete vegetation control resulted in higher yield production at ages 10 to 12 yr than the intensive mechanical treatment at all locations. This regime also resulted in higher yield production than the annual fertilization treatment at four of six locations. Volume mean annual increment for 10- to 12-yr-old plantations with the combination treatment of complete vegetation control and annual fertilization ranged from 325 to 490 ft3/ac, growth rates comparable to those obtained at other high biomass production areas throughout the world. Our economic evaluation based on these results shows that 8 to 12% real rates of return are feasible from investments in intensive loblolly pine plantations in the southeastern United States. South. J. Appl. For. 25(2):69–74.


2019 ◽  
Vol 19 (5) ◽  
pp. 1413-1421 ◽  
Author(s):  
Gaetano Alessandro Vivaldi ◽  
Salvatore Camposeo ◽  
Giuseppe Lopriore ◽  
Cristina Romero-Trigueros ◽  
Francisco Pedrero Salcedo

Abstract The main objective of this study was to acquire agronomic knowledge about the effects of irrigation with saline reclaimed (RW) and desalinated DESERT (DW) water and different irrigation strategies: control full irrigation (FI) and regulated deficit irrigation (RDI) on leaf nutrients, tree growth and fruit quality and yield of almond trees in pots. Our results showed that RW had the highest concentration of some valuable agronomic nutrients such as N, but also of phytotoxic elements (Na and Cl−). Na leaf concentration on RW treatments reached toxic levels, especially under RDI, and toxicity symptoms were shown. Regarding tree growth, cumulate trunk diameter on RW-RDI was significantly lower than on the control treatment and shoot growth was reduced from the beginning of the irrigation season in RW treatments. Maximum yield was reached on RW-FI, 18% higher than the control treatment. However, RDI strategies influenced negatively on yield, being 23% less in RW and 7% less in DW although water productivity was not significantly reduced by water stress. These findings manifest that the combination of RW and RDI can be a promising future practice for almond irrigation, but long-term studies to establish suitable management practices must be developed.


Sign in / Sign up

Export Citation Format

Share Document