scholarly journals Chemical characterization of fog and rain water collected at the eastern Andes cordillera

2005 ◽  
Vol 2 (3) ◽  
pp. 863-885 ◽  
Author(s):  
E. Beiderwieden ◽  
T. Wrzesinsky ◽  
O. Klemm

Abstract. During a three month period in 2003 and 2004, the chemistry of fog and rainwater were studied at the "El Tiro" site in a tropical mountain forest ecosystem in Ecuador, South America. The fogwater samples were collected using a passive fog collector, and for the rain water, a standard rain sampler was employed. For all samples, electric conductivity, pH, and the concentrations of NH4+, K+, Na+, Ca2+, Mg2+, Cl-, NO3-, PO43-, and SO42-, were measured. For each fog sample, a 5 day back trajectory was calculated by the use of the HYSPLIT model. Two types of trajectories occurred. One type was characterized by advection of air masses from the East over the Amazonian basin, the other trajectory arrived one from the West after significant travel time over the Pacific Ocean. We found considerably higher ion concentrations in fogwater samples than in rain samples. Median pH values are 4.58 for fog water, and 5.26 for the rain samples, respectively. The median electric conductivity was 23 µS cm-1 for the fog and 6 µS cm-1 for the rain. The concentrations of all analysed ions were relatively low compared to other mountainous sites (Weathers et al., 1988; Elias et al., 1995; Schemenauer et al., 1995; Wrzesinsky and Klemm, 2000; Zimmermann and Zimmermann, 2002). The continent samples exhibit higher concentrations of most ions as compared to the pacific samples.

2005 ◽  
Vol 9 (3) ◽  
pp. 185-191 ◽  
Author(s):  
E. Beiderwieden ◽  
T. Wrzesinsky ◽  
O. Klemm

Abstract. During a three month period in 2003 and 2004, the chemistry of fog and rainwater were studied at the "El Tiro" site in a tropical mountain forest ecosystem in Ecuador, South America. The fogwater samples were collected using a passive fog collector, and for the rain water, a standard rain sampler was employed. For all samples, electric conductivity, pH, and the concentrations of NH4+, K+, Na+, Ca2+, Mg2+, Cl−, NO3−, PO43−, and SO42− were measured. For each fog sample, a 5 day back trajectory was calculated by the use of the HYSPLIT model. Two types of trajectories occurred. One type was characterized by advection of air masses from the East over the Amazonian basin, the other trajectory arrived one from the West after significant travel time over the Pacific Ocean. We found considerably higher ion concentrations in fogwater samples than in rain samples. Median pH values are 4.58 for fog water, and 5.26 for the rain samples, respectively. The median electric conductivity was 23 μS cm−1 for the fog and 6 μS cm−1 for the rain. The continent samples exhibit higher concentrations of most ions as compared to the pacific samples, but these differences could not be detected statistically.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 539
Author(s):  
Abdelhaleem Khader ◽  
Randal S. Martin

Few air pollutant studies within the Palestinian territories have been reported in the literature. In March–April and May–June of 2018, three low-cost, locally calibrated particulate monitors (AirU’s) were deployed at different elevations and source areas throughout the city of Nablus in Northern West Bank, Palestine. During each of the three-week periods, high but site-to-site similar particulate matter less than 2.5 µm in aerodynamic diameter (PM2.5) and less than 10 µm (PM10) concentrations were observed. The PM2.5 concentrations at the three sampling locations and during both sampling periods averaged 38.2 ± 3.6 µg/m3, well above the World Health Organization’s (WHO) 24 h guidelines. Likewise, the PM10 concentrations exceeded or were just below the WHO’s 24 h guidelines, averaging 48.5 ± 4.3 µg/m3. During both periods, short episodes were identified in which the particulate levels at all three sites increased substantially (≈2×) above the regional baseline. Air mass back trajectory analyses using U.S. National Oceanic and Atmospheric Administration’s (NOAA) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model suggested that, during these peak episodes, the arriving air masses spent recent days over desert areas (e.g., the Saharan Desert in North Africa). On days with regionally low PM2.5 concentrations (≈20 µg/m3), back trajectory analysis showed that air masses were directed in from the Mediterranean Sea area. Further, the lower elevation (downtown) site often recorded markedly higher particulate levels than the valley wall sites. This would suggest locally derived particulate sources are significant and may be beneficial in the identification of potential remediation options.


1982 ◽  
Vol 114 (8) ◽  
pp. 767-768 ◽  
Author(s):  
Kiyoshi Ishii ◽  
Hiroto Yamaoka

No reports have been published about symbiotic penicillate millipeds living in arboreal ant nests, though Donisthorpe (1927) reported those in edaphic ant nests. Therefore, we tried to determine the species and numbers of symbiotic penicillate millipeds in arboreal ant nests.An investigation of the symbiotic penicillate millipeds was conducted in both the maritime forest (Daphniphyllum teijsmannii Zoll., Pinus thunbergii Parl.) and the mountain forest (Machilus thunbergii Sieb. et Zucc., Castanopsis cuspidata Schottky var. sieboldii Nakai) on Miyakejima Island (about N 34°05′, E 139°30′) in the Pacific Ocean, 28 March 1980. As a result, we found symbiotic penicillate millipeds of the family Polyxenidae only in the maritime forest.


2020 ◽  
Vol 12 (22) ◽  
pp. 3769
Author(s):  
Ramiro González ◽  
Carlos Toledano ◽  
Roberto Román ◽  
David Mateos ◽  
Eija Asmi ◽  
...  

Australian smoke from the extraordinary biomass burning in December 2019 was observed over Marambio, Antarctica from the 7th to the 10th January, 2020. The smoke plume was transported thousands of kilometers over the Pacific Ocean, and reached the Antarctic Peninsula at a hight of 13 km, as determined by satellite lidar observations. The proposed origin and trajectory of the aerosol are supported by back-trajectory model analyses. Ground-based Sun–Sky–Moon photometer belonging to the Aerosol Robotic Network (AERONET) measured aerosol optical depth (500 nm wavelength) above 0.3, which is unprecedented for the site. Inversion of sky radiances provide the optical and microphysical properties of the smoke over Marambio. The AERONET data near the fire origin in Tumbarumba, Australia, was used to investigate the changes in the measured aerosol properties after transport and ageing. The analysis shows an increase in the fine mode particle radius and a reduction in absorption (increase in the single scattering albedo). The available long-term AOD data series at Marambio suggests that smoke particles could have remained over Antarctica for several weeks after the analyzed event.


2020 ◽  
Author(s):  
Evgeny Lopatnikov ◽  
Viktor Kalinchuk ◽  
Anatoly Astakhov ◽  
Yang Gang ◽  
Jianjun Zou

<p>Continuous measurements of gaseous elemental mercury (Hg(0)) in the marine boundary layer (MBL) and Hg(0) fluxes were conducted in the Sea of Japan and the Sea of Okhotsk from September 7 to October 17, 2019. All Hg(0) measurements were carried out using two RA-915M mercury analysers (Lumex LLC, Russia). Hg(0) concentrations in the air were measured at two levels (about 2 m and 20 m above the sea surface) with a time resolution of 30 minutes. Hg(0) fluxes were measured at five sample stations using a dynamic flux chamber.</p><p>During the cruise Hg(0) concentrations varied in the range from 0,47 ng/m<sup>3</sup> to 1,55 ng/m<sup>3</sup>, and from 0,31 ng/m<sup>3</sup> to 2,71 ng/m<sup>3</sup> with medians of 0,92 ng/m<sup>3</sup> for 2 m and 20 m, respectively. Atmospheric Hg(0) concentrations in measurements sites were strongly depended on the regions from where air masses came to the study areas. As a result of the Concentration Weighted Trajectory (CWT) analysis we established 2 regions that influenced the Hg(0) concentrations during the cruise: the Northeast China with the Yellow Sea region and the Kurile Islands sector of the Pacific Ocean. The arrival of air masses from China and the Yellow Sea region caused an increase in Hg(0) concentrations in the air in the Sea of Japan and the Sea of Okhotsk. Elevated concentrations were also observed In the Sea of Okhotsk during the periods air masses came from the Kurile Islands sector of the Pacific Ocean.</p><p>Hg(0) fluxes were measured at 3 stations in the Sea of Japan and at 2 stations in the Sea of Okhotsk. The values ranged from 0,57 ng/m<sup>2</sup>/h to 1,55 ng/m<sup>2</sup>/h, with median value of 1,32 ng/m<sup>2</sup>/h. A positive relationships between Hg(0) flux and air and water temperature were observed.</p><p>This work was supported by the Russian Science Foundation (RSF) (Project № 19-77-10011) and by the National Natural Science Foundation of China (Projects №: 41876065, 41420104005, U1606401) and National Program on Global Change and Air-Sea Interaction (Project № GASI-GEOGE-04).</p>


2009 ◽  
Vol 9 (17) ◽  
pp. 6287-6304 ◽  
Author(s):  
J. Kurokawa ◽  
T. Ohara ◽  
I. Uno ◽  
M. Hayasaki ◽  
H. Tanimoto

Abstract. We investigated the influence of meteorological variability on the interannual variation of springtime boundary layer ozone over Japan during 1981–2005 by multiyear simulations with the Models-3 Community Multiscale Air Quality (CMAQ) modeling system and the Regional Emission Inventory in Asia (REAS). CMAQ/REAS generally reproduced the observed interannual variability of springtime ozone over Japan, showing year-to-year variations larger than the annual rate of increase of the long-term trend. We then analyzed the influence of the interannual variation of meteorology in simulated results by using the fixed emissions for 2000 and meteorological fields for each year. As a reference parameter, we calculated the area-weighted surface pressure anomaly over the Pacific Ocean east of Japan. When the anomaly has a large negative value, polluted air masses from continental Asia tend to be transported directly to Japan by westerly winds. In contrast, when the anomaly has a large positive value, influence of the outflow from continental Asia tends to be small because the westerly components of wind fields around Japan are comparatively weak. Instead, southerly winds are relatively strong and transport clean air masses from the Pacific Ocean to Japan. Consequently, springtime ozone over Japan is higher (lower) than in ordinary years when the anomaly has a large negative (positive) value. In general, the interannual variation of springtime ozone over Japan is sensitive to the outflow from continental Asia. We also found some correlation between springtime ozone over Japan and the El Niño-Southern Oscillation, indicating that higher and lower springtime ozone over Japan are related to La Niña and El Niño, respectively. Differences in the meridional displacement and diversity of cyclone tracks near Japan between El Niño and La Niña years may be responsible for interannual variations in the springtime boundary layer ozone over Japan.


2017 ◽  
Vol 17 (4) ◽  
pp. 2613-2629 ◽  
Author(s):  
Carla Frege ◽  
Federico Bianchi ◽  
Ugo Molteni ◽  
Jasmin Tröstl ◽  
Heikki Junninen ◽  
...  

Abstract. The ion composition at high altitude (3454 m a.s.l.) was measured with an atmospheric pressure interface time-of-flight mass spectrometer (APi-TOF) during a period of 9 months, from August 2013 to April 2014. The negative mass spectra were dominated by the ions of sulfuric, nitric, malonic, and methanesulfonic acid (MSA) as well as SO5−. The most prominent positive ion peaks were from amines. The other cations were mainly organic compounds clustered with a nitrogen-containing ion, which could be either NH4+ or an aminium. Occasionally the positive spectra were characterized by groups of compounds each differing by a methylene group. In the negative spectrum, sulfuric acid was always observed during clear sky conditions following the diurnal cycle of solar irradiation. On many occasions we also saw a high signal of sulfuric acid during nighttime when clusters up to the tetramer were observed. A plausible reason for these events could be evaporation from particles at low relative humidity. A remarkably strong correlation between the signals of SO5− and CH3SO3− was observed for the full measurement period. The presence of these two ions during both the day and the night suggests a non-photochemical channel of formation which is possibly linked to halogen chemistry. Halogenated species, especially Br− and IO3−, were frequently observed in air masses that originated mainly from the Atlantic Ocean and occasionally from continental areas based on back trajectory analyses. We found I2O5 clustered with an ion, a species that was proposed from laboratory and modeling studies. All halogenated ions exhibited an unexpected diurnal behavior with low values during daytime. New particle formation (NPF) events were observed and characterized by (1) highly oxygenated molecules (HOMs) and low sulfuric acid or (2) ammonia–sulfuric acid clusters. We present characteristic spectra for each of these two event types based on 26 nucleation episodes. The mass spectrum of the ammonia–sulfuric acid nucleation event compares very well with laboratory measurements reported from the CLOUD chamber. A source receptor analysis indicates that NPF events at the Jungfraujoch take place within a restricted period of time of 24–48 h after air masses have had contact with the boundary layer. This time frame appears to be crucial to reach an optimal oxidation state and concentration of organic molecules necessary to facilitate nucleation.


Sign in / Sign up

Export Citation Format

Share Document