scholarly journals A multitemporal remote sensing approach to parsimonious streamflow modeling in a southcentral Texas watershed, USA

2007 ◽  
Vol 4 (1) ◽  
pp. 1-33 ◽  
Author(s):  
B. P. Weissling ◽  
H. Xie ◽  
K. E. Murray

Abstract. Soil moisture condition plays a vital role in a watershed's hydrologic response to a precipitation event and is thus parameterized in most, if not all, rainfall-runoff models. Yet the soil moisture condition antecedent to an event has proven difficult to quantify both spatially and temporally. This study assesses the potential to parameterize a parsimonious streamflow prediction model solely utilizing precipitation records and multi-temporal remotely sensed biophysical variables (i.e.~from Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra satellite). This study is conducted on a 1420 km2 rural watershed in the Guadalupe River basin of southcentral Texas, a basin prone to catastrophic flooding from convective precipitation events. A multiple regression model, accounting for 78% of the variance of observed streamflow for calendar year 2004, was developed based on gauged precipitation, land surface temperature, and enhanced vegetation Index (EVI), on an 8-day interval. These results compared favorably with streamflow estimations utilizing the Natural Resources Conservation Service (NRCS) curve number method and the 5-day antecedent moisture model. This approach has great potential for developing near real-time predictive models for flood forecasting and can be used as a tool for flood management in any region for which similar remotely sensed data are available.

2018 ◽  
Vol 19 (4) ◽  
pp. 727-741 ◽  
Author(s):  
Randal D. Koster ◽  
Qing Liu ◽  
Sarith P. P. Mahanama ◽  
Rolf H. Reichle

Abstract The assimilation of remotely sensed soil moisture information into a land surface model has been shown in past studies to contribute accuracy to the simulated hydrological variables. Remotely sensed data, however, can also be used to improve the model itself through the calibration of the model’s parameters, and this can also increase the accuracy of model products. Here, data provided by the Soil Moisture Active Passive (SMAP) satellite mission are applied to the land surface component of the NASA GEOS Earth system model using both data assimilation and model calibration in order to quantify the relative degrees to which each strategy improves the estimation of near-surface soil moisture and streamflow. The two approaches show significant complementarity in their ability to extract useful information from the SMAP data record. Data assimilation reduces the ubRMSE (the RMSE after removing the long-term bias) of soil moisture estimates and improves the timing of streamflow variations, whereas model calibration reduces the model biases in both soil moisture and streamflow. While both approaches lead to an improved timing of simulated soil moisture, these contributions are largely independent; joint use of both approaches provides the highest soil moisture simulation accuracy.


2010 ◽  
Vol 7 (6) ◽  
pp. 8703-8740 ◽  
Author(s):  
W. Wang ◽  
D. Huang ◽  
X.-G. Wang ◽  
Y.-R. Liu ◽  
F. Zhou

Abstract. The trapezoidal relationship between surface temperature (Ts) and vegetation index (VI) was used to estimate soil moisture in the present study. An iterative algorithm is proposed to estimate the vertices of the Ts~VI trapezoid theoretically for each grid, and then WDI is calculated for each grid using MODIS remotely sensed measurements of surface temperature and enhanced vegetation index (EVI). The capability of using WDI based on Ts~VI trapezoid to estimate soil moisture is evaluated using soil moisture observations and antecedent precipitation in the Walnut Gulch Experimental Watershed (WGEW) in Arizona, USA. The result shows that, Ts~VI trapezoid based WDI can well capture temporal variation in surface soil moisture, but the capability of detecting spatial variation is poor for such a semi-arid region as WGEW.


2011 ◽  
Vol 12 (5) ◽  
pp. 766-786 ◽  
Author(s):  
Joseph A. Santanello ◽  
Christa D. Peters-Lidard ◽  
Sujay V. Kumar

Abstract The inherent coupled nature of earth’s energy and water cycles places significant importance on the proper representation and diagnosis of land–atmosphere (LA) interactions in hydrometeorological prediction models. However, the precise nature of the soil moisture–precipitation relationship at the local scale is largely determined by a series of nonlinear processes and feedbacks that are difficult to quantify. To quantify the strength of the local LA coupling (LoCo), this process chain must be considered both in full and as individual components through their relationships and sensitivities. To address this, recent modeling and diagnostic studies have been extended to 1) quantify the processes governing LoCo utilizing the thermodynamic properties of mixing diagrams, and 2) diagnose the sensitivity of coupled systems, including clouds and moist processes, to perturbations in soil moisture. This work employs NASA’s Land Information System (LIS) coupled to the Weather Research and Forecasting (WRF) mesoscale model and simulations performed over the U.S. Southern Great Plains. The behavior of different planetary boundary layers (PBL) and land surface scheme couplings in LIS–WRF are examined in the context of the evolution of thermodynamic quantities that link the surface soil moisture condition to the PBL regime, clouds, and precipitation. Specifically, the tendency toward saturation in the PBL is quantified by the lifting condensation level (LCL) deficit and addressed as a function of time and space. The sensitivity of the LCL deficit to the soil moisture condition is indicative of the strength of LoCo, where both positive and negative feedbacks can be identified. Overall, this methodology can be applied to any model or observations and is a crucial step toward improved evaluation and quantification of LoCo within models, particularly given the advent of next-generation satellite measurements of PBL and land surface properties along with advances in data assimilation schemes.


2020 ◽  
Vol 12 (10) ◽  
pp. 1671
Author(s):  
Vivien-Georgiana Stefan ◽  
Olivier Merlin ◽  
Maria-José Escorihuela ◽  
Beatriz Molero ◽  
Jamal Chihrane ◽  
...  

The resolution of current satellite surface soil moisture (SM) estimates is very low, of tens of kilometers, which proves to be insufficient for various agricultural and hydrological applications. Amongst the existing downscaling approaches of remotely sensed SM, DISPATCH (DISaggregation based on a Physical And Theoretical scale CHange) improves the resolution of SMOS (Soil Moisture and Ocean Salinity) soil moisture data using soil evaporative efficiency (SEE) estimates at high resolution (HR) and a SEE(SM) model implemented at low resolution (LR). Defined as the ratio of actual to potential soil evaporation, SEE can be derived from the remotely sensed land surface temperature (LST) and normalized difference vegetation index (NDVI). The current version of DISPATCH uses a linear SEE(SM) model. This study aims at improving the SEE(SM) model and testing different calibration strategies, to ultimately have more robust and better downscaled SM products. A nonlinear SEE(SM) model is introduced and its influence on the derived HR SM products is studied over a range of conditions. Each model, linear and nonlinear, is calibrated from remote sensing data on a daily and a multi-date basis. The approaches were tested over two mixed dry and irrigated areas in Catalonia, Spain, and over one dry area in Morocco. When using the linear model, better statistical results were generally obtained using a daily calibration (current version of DISPATCH), most notably over one Spanish site. However, the best results were systematically obtained for an annually calibrated nonlinear model, in terms of all metrics considered: correlation coefficient, slope of the linear regression, bias, unbiased root mean square error. In particular, when using the annually calibrated nonlinear SEE (SM) model, the temporal slope of the linear regression between disaggregated and in situ soil moisture increased to 1.16 and 0.75 for one Spanish site and for the Moroccan site (as opposed to 0.44 and 0.58, respectively, when using the linear model with a daily calibration). The temporal correlation coefficient increased to 0.47 and 0.54 over the Spanish sites (as opposed to 0.18 and 0.27, respectively, when using the linear model with a daily calibration). Those contrasted results indicate compensation effects between the model type and the calibration strategy. Taking into account studies that report the strong nonlinear behavior of the SEE with respect to SM, the introduction of the nonlinear SEE(SM) model in DISPATCH, combined with a multi-date calibration, is proven to perform significantly better under various conditions, leading to more robust disaggregated SM products. The SEE modeling based on the nonlinear SM model, with a multi-date calibration, could be integrated into the CATDS—Centre Aval de Traitement des Données SMOS as a future product, as well as into existing evapotranspiration models, which are based on a combination of thermal and microwave data.


2021 ◽  
Author(s):  
Nawa Raj Pradhan

A soil moisture retrieval method is proposed, in the absence of ground-based auxiliary measurements, by deriving the soil moisture content relationship from the satellite vegetation index-based evapotranspiration fraction and soil moisture physical properties of a soil type. A temperature–vegetation dryness index threshold value is also proposed to identify water bodies and underlying saturated areas. Verification of the retrieved growing season soil moisture was performed by comparative analysis of soil moisture obtained by observed conventional in situ point measurements at the 239-km2 Reynolds Creek Experimental Watershed, Idaho, USA (2006–2009), and at the US Climate Reference Network (USCRN) soil moisture measurement sites in Sundance, Wyoming (2012–2015), and Lewistown, Montana (2014–2015). The proposed method best represented the effective root zone soil moisture condition, at a depth between 50 and 100 cm, with an overall average R2 value of 0.72 and average root mean square error (RMSE) of 0.042.


2020 ◽  
Vol 12 (23) ◽  
pp. 3869
Author(s):  
Malak Henchiri ◽  
Qi Liu ◽  
Bouajila Essifi ◽  
Tehseen Javed ◽  
Sha Zhang ◽  
...  

Studying the significant impacts of drought on vegetation is crucial to understand its dynamics and interrelationships with precipitation, soil moisture, and temperature. In North and West Africa regions, the effects of drought on vegetation have not been clearly stated. Therefore, the present study aims to bring out the drought fluctuations within various types of Land Cover (LC) (Grasslands, Croplands, Savannas, and Forest) in North and West Africa regions. The drought characteristics were evaluated by analyzing the monthly Self-Calibrating Palmer Drought Severity Index (scPDSI) in different timescale from 2002 to 2018. Then, the frequency of droughts was examined over the same period. The results have revealed two groups of years (dry years and normal years), based on drought intensity. The selected years were used to compare the shifting between vegetation and desert. The Vegetation Condition Index (VCI), the Temperature Condition Index (TCI), the Precipitation Condition Index (PCI), and the Soil Moisture Condition Index (SMCI) were also used to investigate the spatiotemporal variation of drought and to determine which LC class was more vulnerable to drought risk. Our results revealed that Grasslands and Croplands in the West region, and Grasslands, Croplands, and Savannas in the North region are more sensitive to drought. A higher correlation was observed among the Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), Tropical Rainfall Measuring Mission (TRMM), and Soil Moisture (SM). Our findings suggested that NDVI, TRMM, and SM are more suitable for monitoring drought over the study area and have a reliable accuracy (R2 > 0.70) concerning drought prediction. The outcomes of the current research could, explicitly, contribute progressively towards improving specific drought mitigation strategies and disaster risk reduction at regional and national levels.


2011 ◽  
Vol 15 (5) ◽  
pp. 1699-1712 ◽  
Author(s):  
W. Wang ◽  
D. Huang ◽  
X.-G. Wang ◽  
Y.-R. Liu ◽  
F. Zhou

Abstract. The trapezoidal relationship between land surface temperature (Ts) and Vegetation Index (VI) was used to estimate soil moisture in the present study. An iterative algorithm is proposed to estimate the vertices of the Ts ~ VI trapezoid theoretically for each pixel, and then Water Deficit Index (WDI) is calculated based on the Ts ~ VI trapezoid using MODIS remotely sensed measurements of surface temperature and enhanced vegetation index (EVI). The capability of using WDI based on Ts ~ VI trapezoid to estimate soil moisture is evaluated using soil moisture observations and antecedent precipitation in the Walnut Gulch Experimental Watershed (WGEW) in Arizona, USA. The result shows that, the Ts ~ VI trapezoid based WDI can capture temporal variation in surface soil moisture well, but the capability of detecting spatial variation is poor for such a semi-arid region as WGEW.


Sign in / Sign up

Export Citation Format

Share Document