scholarly journals Temporal Calibration of an Evaporation-Based Spatial Disaggregation Method of SMOS Soil Moisture Data

2020 ◽  
Vol 12 (10) ◽  
pp. 1671
Author(s):  
Vivien-Georgiana Stefan ◽  
Olivier Merlin ◽  
Maria-José Escorihuela ◽  
Beatriz Molero ◽  
Jamal Chihrane ◽  
...  

The resolution of current satellite surface soil moisture (SM) estimates is very low, of tens of kilometers, which proves to be insufficient for various agricultural and hydrological applications. Amongst the existing downscaling approaches of remotely sensed SM, DISPATCH (DISaggregation based on a Physical And Theoretical scale CHange) improves the resolution of SMOS (Soil Moisture and Ocean Salinity) soil moisture data using soil evaporative efficiency (SEE) estimates at high resolution (HR) and a SEE(SM) model implemented at low resolution (LR). Defined as the ratio of actual to potential soil evaporation, SEE can be derived from the remotely sensed land surface temperature (LST) and normalized difference vegetation index (NDVI). The current version of DISPATCH uses a linear SEE(SM) model. This study aims at improving the SEE(SM) model and testing different calibration strategies, to ultimately have more robust and better downscaled SM products. A nonlinear SEE(SM) model is introduced and its influence on the derived HR SM products is studied over a range of conditions. Each model, linear and nonlinear, is calibrated from remote sensing data on a daily and a multi-date basis. The approaches were tested over two mixed dry and irrigated areas in Catalonia, Spain, and over one dry area in Morocco. When using the linear model, better statistical results were generally obtained using a daily calibration (current version of DISPATCH), most notably over one Spanish site. However, the best results were systematically obtained for an annually calibrated nonlinear model, in terms of all metrics considered: correlation coefficient, slope of the linear regression, bias, unbiased root mean square error. In particular, when using the annually calibrated nonlinear SEE (SM) model, the temporal slope of the linear regression between disaggregated and in situ soil moisture increased to 1.16 and 0.75 for one Spanish site and for the Moroccan site (as opposed to 0.44 and 0.58, respectively, when using the linear model with a daily calibration). The temporal correlation coefficient increased to 0.47 and 0.54 over the Spanish sites (as opposed to 0.18 and 0.27, respectively, when using the linear model with a daily calibration). Those contrasted results indicate compensation effects between the model type and the calibration strategy. Taking into account studies that report the strong nonlinear behavior of the SEE with respect to SM, the introduction of the nonlinear SEE(SM) model in DISPATCH, combined with a multi-date calibration, is proven to perform significantly better under various conditions, leading to more robust disaggregated SM products. The SEE modeling based on the nonlinear SM model, with a multi-date calibration, could be integrated into the CATDS—Centre Aval de Traitement des Données SMOS as a future product, as well as into existing evapotranspiration models, which are based on a combination of thermal and microwave data.

2020 ◽  
Author(s):  
Vivien Georgiana Stefan ◽  
Olivier Merlin ◽  
Beatriz Molero ◽  
Maria-Jose Escorihuela ◽  
Salah Er-Raki

<h3>High resolution (HR) soil moisture estimates are needed by a range of agricultural and hydrological applications, considering it’s one of the drivers of evaporation, infiltration and runoff. Since the resolution of current remote sensing estimates (tens of kilometres) is insufficient for the majority of these applications, different downscaling techniques are used to improve the resolution. Amongst the existing methodologies, DISPATCH (DISaggregation based on a Physical And Theoretical scale CHange) has been proven to accurately improve the resolution of SMOS (Soil Moisture Ocean Salinity) soil moisture data, by using a soil evaporative efficiency (SEE) model. SEE can be derived from remotely sensed land surface temperature (LST) and normalized difference vegetation index (NDVI) data. DISPATCH uses two different SEE models: a temperature-based LST-driven model, and a soil moisture-based SMOS-driven model. This study aims at improving the robustness of the soil moisture-based SEE model, by testing different calibrations and models. Two SM-based SEE models, one linear and one nonlinear, are tested, each being calibrated from remote sensing data on a daily and on a multi-date basis. The approaches were implemented over two mixed dry and irrigated areas in Catalonia, Spain, and over a dry area in Morocco.  When looking at the two models in the daily calibration mode, the linear model performs better. Over the two areas in Spain, the correlation coefficients obtained with the linear model are 0.63 and 0.18 as opposed to 0.13 and -0.08, respectively. In Morocco, the correlation coefficients are roughly similar, 0.32 (linear mode) and 0.31 (nonlinear mode). The slopes of linear regression are also improved in the linear case, 0.44 and 0.88, as opposed to -0.14 and 0.11, for the Spanish sites. However, the best results were obtained in the case of the nonlinear model with an annual calibration. When comparing the linear and nonlinear models in the annual calibration mode, correlation coefficients are improved when using the nonlinear mode, from 0.13 and -0.08 to 0.78 and to 0.47 (Spanish site), and from 0.25 to 0.33 (Moroccan site). The slopes of linear regression are also improved, from 0.11 to 0.88, -0.14 to 1.15 (Spain) and from 0.53 to 0.74 (Morocco). The root mean square difference is generally low, ranging from 0.03 to 0.17 m3/m3. Considering several studies that report a strong nonlinear behaviour of the SEE with respect to SM, the nonlinear SM-based model in DISPATCH, combined with a multi-date calibration, is proven to give a significantly better performance, enhancing the robustness of the derived HR SM products.</h3>


2021 ◽  
Author(s):  
Gaetana Ganci ◽  
Annalisa Cappello ◽  
Giuseppe Bilotta ◽  
Giuseppe Pollicino ◽  
Luigi Lodato

<p>The application of remote sensing for monitoring, detecting and analysing the spatial and extents and temporal changes of waste dumping sites and landfills could become a cost-effective and powerful solution. Multi-spectral satellite images, especially in the thermal infrared, can be exploited to characterize the state of activity of a landfill.  Indeed, waste disposal sites, during the period of activity, can show differences in surface temperature (LST, Land Surface Temperature), state of vegetation (estimated through NDVI, Normalized Difference Vegetation Index) or soil moisture (estimated through NDWI, Normalized Difference Water Index) compared to neighboring areas. Landfills with organic waste typically show higher temperatures than surrounding areas due to exothermic decomposition activities. In fact, the biogas, in the absence or in case of inefficiency of the conveying plants, rises through the layers of organic matter and earth (landfill body) until it reaches the surface at a temperature of over 40 ° C. Moreover, in some cases, leachate contamination of the aquifers can be identified by analyzing the soil moisture, through the estimate of the NDWI, and the state of suffering of the vegetation surrounding the site, through the estimate of the NDVI. This latter can also be an indicator of soil contamination due to the presence of toxic and potentially dangerous waste when buried or present nearby. To take into account these facts, we combine the LST, NDVI and NDWI indices of the dump site and surrounding areas in order to characterize waste disposal sites. Preliminary results show how this approach can bring out the area and level of activity of known landfill sites. This could prove particularly useful for the definition of intervention priorities in landfill remediation works.</p>


2020 ◽  
Author(s):  
Toby N. Carlson ◽  
George Petropoulos

Earth Observation (EO) provides a promising approach towards deriving accurate spatiotemporal estimates of key parameters characterizing land surface interactions, such as latent (LE) and sensible (H) heat fluxes as well as soil moisture content. This paper proposes a very simple method to implement, yet reliable to calculate evapotranspiration fraction (EF) and surface moisture availability (Mo) from remotely sensed imagery of Normalized Difference Vegetation Index (NDVI) and surface radiometric temperature (Tir). The method is unique in that it derives all of its information solely from these two images. As such, it does not depend on knowing ancillary surface or atmospheric parameters, nor does it require the use of a land surface model. The procedure for computing spatiotemporal estimates of these important land surface parameters is outlined herein stepwise for practical application by the user. Moreover, as the newly developedscheme is not tied to any particular sensor, it can also beimplemented with technologically advanced EO sensors launched recently or planned to be launched such as Landsat 8 and Sentinel 3. The latter offers a number of key advantages in terms of future implementation of the method and wider use for research and practical applications alike.


Author(s):  
Pandji W. Dhewantara ◽  
Wenbiao Hu ◽  
Wenyi Zhang ◽  
Wenwu Yin ◽  
Fan Ding ◽  
...  

ObjectiveTo quantify the effects of climate variability, selected remotely-sensed environmental factors on human leptospirosis in the high-risk counties in China.IntroductionLeptospirosis is a zoonotic disease caused by the pathogenic Leptospira bacteria and is ubiquitously distributed in tropical and subtropical regions. Leptospirosis transmission driven by complex factors include climatic, environmental and local social conditions 1. Each year, there are about 1 million cases of human leptospirosis reported globally and it causes approximately 60,000 people lost their lives due to infection 2. Yunnan Province and Sichuan Province are two of highly endemic areas in the southwest China that had contributed for 47% of the total national reported cases during 2005-2015 3. Factors underlying local leptospirosis transmission in these two areas is far from clear and thus hinder the efficacy of control strategies. Hence, it is essential to assess and identify local key drivers associated with persistent leptospirosis transmission in that areas to lay foundation for the development of early-warning systems. Currently, remote sensing technology provides broad range of physical environment data at various spatial and temporal scales 4, which can be used to understand the leptospirosis epidemiology. Utilizing satellite-based environmental data combined with locally-acquired weather data may potentially enhance existing surveillance programs in China so that the burden of leptospirosis could be reduced.MethodsThis study was carried out in two counties situated in different climatic zone in the southwestern China, Mengla and Yilong County (Fig 1). Total of 543 confirmed leptospirosis cases reported during 2006-2016 from both counties were used in this analysis. Time series decomposition was used to explore the long-term seasonality of leptospirosis incidence in two counties during the period studied. Monthly remotely-sensed environmental data such as normalized difference vegetation index (NDVI), modified normalized water difference index (MNDWI) and land surface temperature (LST) were collected from satellite databases. Climate data include monthly precipitation and relative humidity (RH) data were obtained from local weather stations. Lagged effects of rainfall, humidity, normalized difference vegetation index (NDVI), modified normalized difference water index (MNDWI) and land surface temperature (LST) on leptospirosis was examined. Generalized linear model with negative binomial link was used to assess the relationships of climatic and physical environment factors with leptospirosis. Best-fitted model was determined based on the lowest information criterion and deviance.ResultsLeptospirosis incidence in both counties showed strong and unique annual seasonality. Bi-modal temporal pattern was exhibited in Mengla County while single epidemic curve was persistently demonstrated in Yilong County (Fig 2). Total of 10 and 20 models were generated for Mengla and Yilong County, respectively. After adjusting for seasonality, final best-fitted models indicated that rainfall at lag of 6-month (incidence rate ratio (IRR)= 0.989; 95% confidence interval (CI) 0.985-0.993, p<0.001) and current LST (IRR=0.857, 95%CI:0.729-0.929, p<0.001) significantly associated with leptospirosis in Mengla County (Table 1). While in Yilong, rainfall at 1-month lag, MNDWI (5-months lag) and LST (3-months lag) were associated with an increased incidence of leptospirosis with a risk ratio of 1.013 (95%CI: 1.003-1.023), 7.960 (95%CI: 1.241-47.66) and 1.193 (95%CI:1.095-1.301), respectively.ConclusionsOur study identified lagged effect and relationships of weather and remotely-sensed environmental factors with leptospirosis in two endemic counties in China. Rainfall in combination with satellite derived physical environment factors such as flood/water indicator (MNDWI) and temperature (LST) could help explain the local epidemiology as well as good predictors for leptospirosis outbreak in both counties. This would also be an avenue for the development of leptospirosis early warning system in to support leptospirosis control in China.References1. Haake, D. A. , Levett, P. N. Leptospirosis in humans. Current Topics in Microbiology and Immunology 2015, 387, 65-97.2. Costa, F. et al. Global Morbidity and Mortality of Leptospirosis: A Systematic Review. PLOS Neglected Tropical Diseases 2015, 9, e0003898.3. Dhewantara, P. W. et al. Epidemiological shift and geographical heterogeneity in the burden of leptospirosis in China. Infectious Diseases of Poverty 2018, 7, 57.4. Herbreteau, V., Salem, G., Souris, M., Hugot, J. P. & Gonzalez, J. P. Thirty years of use and improvement of remote sensing, applied to epidemiology: from early promises to lasting frustration. Health & Place 2007, 13, 400-403. 


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8371
Author(s):  
Irina Ontel ◽  
Anisoara Irimescu ◽  
George Boldeanu ◽  
Denis Mihailescu ◽  
Claudiu-Valeriu Angearu ◽  
...  

This paper will assess the sensitivity of soil moisture anomaly (SMA) obtained from the Soil water index (SWI) product Metop ASCAT, to identify drought in Romania. The SWI data were converted from relative values (%) to absolute values (m3 m−3) using the soil porosity method. The conversion results (SM) were validated using soil moisture in situ measurements from ISMN at 5 cm depths (2015–2020). The SMA was computed based on a 10 day SWI product, between 2007 and 2020. The analysis was performed for the depths of 5 cm (near surface), 40 cm (sub surface), and 100 cm (root zone). The standardized precipitation index (SPI), land surface temperature anomaly (LST anomaly), and normalized difference vegetation index anomaly (NDVI anomaly) were computed in order to compare the extent and intensity of drought events. The best correlations between SM and in situ measurements are for the stations located in the Getic Plateau (Bacles (r = 0.797) and Slatina (r = 0.672)), in the Western Plain (Oradea (r = 0.693)), and in the Moldavian Plateau (Iasi (r = 0.608)). The RMSE were between 0.05 and 0.184. Furthermore, the correlations between the SMA and SPI, the LST anomaly, and the NDVI anomaly were significantly registered in the second half of the warm season (July–September). Due to the predominantly agricultural use of the land, the results can be useful for the management of water resources and irrigation in regions frequently affected by drought.


Author(s):  
H. Wan ◽  
Z. D. Wang ◽  
P. Guo ◽  
B. Wang ◽  
X. C. Li ◽  
...  

Abstract. Drought is one of the frequent natural disasters in Shandong province, which is characterized by high frequency and wide range. In response to frequent droughts that are not monitored in time, monitoring the changes of drought is of great significance to agricultural production and social development. This study used the Temperature-Vegetation-soil Moisture Dryness Index (TVMDI) model, combined with the optical MODIS land surface temperature, vegetation index, surface albedo data and microwave FY-3B soil moisture data, to monitor the drought of Shandong province in 2016. The precipitation and temperature data of weather station were used to validate the monitoring results. The results show that, in 2016, the drought in Shandong province mainly occurred in winter and spring, and the drought in summer was alleviated. From the perspective of space, the northern Shandong and the Shandong peninsula areas are relatively humid with less drought time, while the local areas in the central and southern Shandong province suffer from severe drought with longer drought time. From the perspective of correlation with meteorological factors, the average correlation coefficient between TVMDI and precipitation can reach 0.45, and the average correlation coefficient between TVMDI and temperature can reach 0.63.


2021 ◽  
Vol 87 (9) ◽  
pp. 649-660
Author(s):  
Majid Rahimzadegan ◽  
Arash Davari ◽  
Ali Sayadi

Soil moisture content (SMC), product of Advanced Microwave Scanning Radiometer 2 (AMSR2), is not at an adequate level of accuracy on a regional scale. The aim of this study is to introduce a simple method to estimate SMC while synergistically using AMSR2 and Moderate Resolution Imaging Spectroradiometer (MODIS) measurements with a higher accuracy on a regional scale. Two MODIS products, including daily reflectance (MYD021) and nighttime land surface temperature (LST) products were used. In 2015, 1442 in situ SMC measurements from six stations in Iran were used as ground-truth data. Twenty models were evaluated using combinations of polarization index (PI), index of soil wetness (ISW), normalized difference vegetation index (NDVI), and LST. The model revealed the best results using a quadratic combination of PI and ISW, a linear form of LST, and a constant value. The overall correlation coefficient, root-mean-square error, and mean absolute error were 0.59, 4.62%, and 3.01%, respectively.


2021 ◽  
Vol 13 (4) ◽  
pp. 797
Author(s):  
Joan Francesc Munoz-Martin ◽  
Raul Onrubia ◽  
Daniel Pascual ◽  
Hyuk Park ◽  
Miriam Pablos ◽  
...  

Global Navigation Satellite System—Reflectometry (GNSS-R) has already proven its potential for retrieving a number of geophysical parameters, including soil moisture. However, single-pass GNSS-R soil moisture retrieval is still a challenge. This study presents a comparison of two different data sets acquired with the Microwave Interferometer Reflectometer (MIR), an airborne-based dual-band (L1/E1 and L5/E5a), multiconstellation (GPS and Galileo) GNSS-R instrument with two 19-element antenna arrays with four electronically steered beams each. The instrument was flown twice over the OzNet soil moisture monitoring network in southern New South Wales (Australia): the first flight was performed after a long period without rain, and the second one just after a rain event. In this work, the impact of surface roughness and vegetation attenuation in the reflectivity of the GNSS-R signal is assessed at both L1 and L5 bands. The work analyzes the reflectivity at different integration times, and finally, an artificial neural network is used to retrieve soil moisture from the reflectivity values. The algorithm is trained and compared to a 20-m resolution downscaled soil moisture estimate derived from SMOS soil moisture, Sentinel-2 normalized difference vegetation index (NDVI) data, and ECMWF Land Surface Temperature.


Sign in / Sign up

Export Citation Format

Share Document