scholarly journals Climate change impacts on snow water availability in the Euphrates-Tigris basin

2011 ◽  
Vol 8 (2) ◽  
pp. 3631-3666 ◽  
Author(s):  
M. Özdoğan

Abstract. This study investigates the effects of projected climate change on snow water availability in the Euphrates-Tigris basin using the Variable Infiltration Capacity (VIC) macro scale hydrologic model and a set of regional climate-change outputs from 13 global circulation models (GCMs) forced with two greenhouse gas emission scenarios for two time periods in the 21st century (2050 and 2090). The hydrologic model produces a reasonable simulation of seasonal and spatial variation in snow cover and associated snow water equivalent (SWE) in the mountainous areas of the basin, although its performance is poorer at marginal snow cover sites. While there is great variation across GCM outputs influencing snow water availability, the majority of models and scenarios suggest a significant decline (between 10 and 60 percent) in available snow water, particularly under the aggressive A2 climate change scenario and later in the 21st century. The changes in SWE are more stable when multi-model ensemble GCM outputs are used to minimize inter-model variability, suggesting a consistent and significant decrease in snow-covered areas and associated water availability in the headwaters of the Euphrates Tigris basin. Detailed analysis of future climatic conditions point to the combined effects of reduced precipitation and increased temperatures as primary drivers of reduced snowpack. Results also indicate a more rapid decline in snow cover in the lower elevation zones than the higher areas in a changing climate. The simulated changes in snow water availability have important implications for the future of water resources and associated hydropower generation and land-use management and planning in a region already ripe for interstate water conflict. While the changes in the frequency and intensity of snow-bearing circulation systems or the interannual variability related to climate were not considered, the simulated changes in snow water availability presented here are likely to be indicative of climate change impacts on the water resources of the Euphrates-Tigris basin.

2011 ◽  
Vol 15 (9) ◽  
pp. 2789-2803 ◽  
Author(s):  
M. Özdoğan

Abstract. This study investigates the effects of projected climate change on snow water availability in the Euphrates-Tigris basin using the Variable Infiltration Capacity (VIC) macro scale hydrologic model and a set of regional climate-change outputs from 13 global circulation models (GCMs) forced with two greenhouse gas emission scenarios for two time periods in the 21st century (2050 and 2090). The hydrologic model produces a reasonable simulation of seasonal and spatial variation in snow cover and associated snow water equivalent (SWE) in the mountainous areas of the basin, although its performance is poorer at marginal snow cover sites. While there is great variation across GCM outputs influencing snow water availability, the majority of models and scenarios suggest a significant decline (between 10 and 60 percent) in available snow water, particularly under the high-impact A2 climate change scenario and later in the 21st century. The changes in SWE are more stable when multi-model ensemble GCM outputs are used to minimize inter-model variability, suggesting a consistent and significant decrease in snow-covered areas and associated water availability in the headwaters of the Euphrates-Tigris basin. Detailed analysis of future climatic conditions point to the combined effects of reduced precipitation and increased temperatures as primary drivers of reduced snowpack. Results also indicate a more rapid decline in snow cover in the lower elevation zones than the higher areas in a changing climate but these findings also contain a larger uncertainty. The simulated changes in snow water availability have important implications for the future of water resources and associated hydropower generation and land-use management and planning in a region already ripe for interstate water conflict. While the changes in the frequency and intensity of snow-bearing circulation systems or the interannual variability related to climate were not considered, the simulated changes in snow water availability presented here are likely to be indicative of climate change impacts on the water resources of the Euphrates-Tigris basin.


2018 ◽  
Vol 22 (2) ◽  
pp. 1593-1614 ◽  
Author(s):  
Florian Hanzer ◽  
Kristian Förster ◽  
Johanna Nemec ◽  
Ulrich Strasser

Abstract. A physically based hydroclimatological model (AMUNDSEN) is used to assess future climate change impacts on the cryosphere and hydrology of the Ötztal Alps (Austria) until 2100. The model is run in 100 m spatial and 3 h temporal resolution using in total 31 downscaled, bias-corrected, and temporally disaggregated EURO-CORDEX climate projections for the representative concentration pathways (RCPs) 2.6, 4.5, and 8.5 scenarios as forcing data, making this – to date – the most detailed study for this region in terms of process representation and range of considered climate projections. Changes in snow coverage, glacierization, and hydrological regimes are discussed both for a larger area encompassing the Ötztal Alps (1850 km2, 862–3770 m a.s.l.) as well as for seven catchments in the area with varying size (11–165 km2) and glacierization (24–77 %). Results show generally declining snow amounts with moderate decreases (0–20 % depending on the emission scenario) of mean annual snow water equivalent in high elevations (> 2500 m a.s.l.) until the end of the century. The largest decreases, amounting to up to 25–80 %, are projected to occur in elevations below 1500 m a.s.l. Glaciers in the region will continue to retreat strongly, leaving only 4–20 % of the initial (as of 2006) ice volume left by 2100. Total and summer (JJA) runoff will change little during the early 21st century (2011–2040) with simulated decreases (compared to 1997–2006) of up to 11 % (total) and 13 % (summer) depending on catchment and scenario, whereas runoff volumes decrease by up to 39 % (total) and 47 % (summer) towards the end of the century (2071–2100), accompanied by a shift in peak flows from July towards June.


2015 ◽  
Vol 16 (2) ◽  
pp. 762-780 ◽  
Author(s):  
Pablo A. Mendoza ◽  
Martyn P. Clark ◽  
Naoki Mizukami ◽  
Andrew J. Newman ◽  
Michael Barlage ◽  
...  

Abstract The assessment of climate change impacts on water resources involves several methodological decisions, including choices of global climate models (GCMs), emission scenarios, downscaling techniques, and hydrologic modeling approaches. Among these, hydrologic model structure selection and parameter calibration are particularly relevant and usually have a strong subjective component. The goal of this research is to improve understanding of the role of these decisions on the assessment of the effects of climate change on hydrologic processes. The study is conducted in three basins located in the Colorado headwaters region, using four different hydrologic model structures [PRMS, VIC, Noah LSM, and Noah LSM with multiparameterization options (Noah-MP)]. To better understand the role of parameter estimation, model performance and projected hydrologic changes (i.e., changes in the hydrology obtained from hydrologic models due to climate change) are compared before and after calibration with the University of Arizona shuffled complex evolution (SCE-UA) algorithm. Hydrologic changes are examined via a climate change scenario where the Community Climate System Model (CCSM) change signal is used to perturb the boundary conditions of the Weather Research and Forecasting (WRF) Model configured at 4-km resolution. Substantial intermodel differences (i.e., discrepancies between hydrologic models) in the portrayal of climate change impacts on water resources are demonstrated. Specifically, intermodel differences are larger than the mean signal from the CCSM–WRF climate scenario examined, even after the calibration process. Importantly, traditional single-objective calibration techniques aimed to reduce errors in runoff simulations do not necessarily improve intermodel agreement (i.e., same outputs from different hydrologic models) in projected changes of some hydrological processes such as evapotranspiration or snowpack.


2017 ◽  
Author(s):  
Florian Hanzer ◽  
Kristian Förster ◽  
Johanna Nemec ◽  
Ulrich Strasser

Abstract. A physically based hydroclimatological model (AMUNDSEN) is used to assess future climate change impacts on the cryosphere and hydrology of the Ötztal Alps (Austria) until 2100. The model is run in 100 m spatial and 3 h temporal resolution using in total 31 downscaled, bias-corrected, and temporally disaggregated EURO-CORDEX climate projections for the RCP2.6, RCP4.5, and RCP8.5 scenarios as forcing data. Changes in snow coverage, glacierization, and hydrological regimes are discussed both for a larger area encompassing the Ötztal Alps (1850 km2, 862–3770 m a.s.l.) as well as for seven catchments in the area with varying size (11–16 km2) and glacierization (24–77 %). Results show generally declining snow amounts with moderate decreases (0–20 % depending on the emission scenario) of mean annual snow water equivalent in high elevations (> 2500 m a.s.l.) until the end of the century, however decreases of 25–80 % in elevations below 1500 m a.s.l. Glaciers in the region will continue to retreat strongly, leaving only 4–20 % of the initial (as of 2006) ice volume left by 2100. Total and summer (JJA) runoff will change little during the early 21st century (2011–2040) with simulated decreases (compared to 1997–2006) of up to 11 % (total) and 13 % (summer) depending on catchment and scenario, whereas runoff volumes decrease by up to 39 % (total) and 47 % (summer) towards the end of the century (2071–2100), accompanied by a shift in peak flows from July towards June.


2021 ◽  
pp. 246-268
Author(s):  
Amit Raj ◽  
M.Siva Kumar ◽  
Satish Kumar ◽  
H.P. Singh

Water is a renewable resource for the Sustaining Ecosystem. Rapid industrialization and population impacts the climate. The imbalance of Climate changes over various geographical regions affects the hydrological and morphological behaviour of water resources. The Water balances of the system are analysed via the SWAT Model (Soil and Water Assessment Tool). By simulating and predicting future hydrological behaviour with different scenarios using many climatological models. Using weather data and predicting future hydrological outputs such as Runoff, Temperature, Base flow, groundwater flow, AET etc. in 21st century. Model is calibrated and validated using statistical methods. Results of various modelling Researches in field of SWAT and their major findings are discussed in this review paper. The future Scope of SWAT modelling and its Applications are also recommended. Forty papers are discussed in tabular form with their results and their future improvements were concluded. This paper fulfills a need for precise and quick reviews of recent researches in field of SWAT modelling with climate change on water resources. This will help researchers, academician’s insights into precise climate change impacts on water resources in 21st Century. Necessary steps to be adopted for their successful extreme repercussions of climate change and measures adopted for managing the severe damages to our Ecosystem with sustainable development goals in new millennium are discussed.


2013 ◽  
Vol 17 (7) ◽  
pp. 2581-2597 ◽  
Author(s):  
E. A. Sproles ◽  
A. W. Nolin ◽  
K. Rittger ◽  
T. H. Painter

Abstract. This study investigates the effect of projected temperature increases on maritime mountain snowpack in the McKenzie River Basin (MRB; 3041 km2) in the Cascades Mountains of Oregon, USA. We simulated the spatial distribution of snow water equivalent (SWE) in the MRB for the period of 1989–2009 with SnowModel, a spatially-distributed, process-based model (Liston and Elder, 2006b). Simulations were evaluated using point-based measurements of SWE, precipitation, and temperature that showed Nash-Sutcliffe Efficiency coefficients of 0.83, 0.97, and 0.80, respectively. Spatial accuracy was shown to be 82% using snow cover extent from the Landsat Thematic Mapper. The validated model then evaluated the inter- and intra-year sensitivity of basin wide snowpack to projected temperature increases (2 °C) and variability in precipitation (±10%). Results show that a 2 °C increase in temperature would shift the average date of peak snowpack 12 days earlier and decrease basin-wide volumetric snow water storage by 56%. Snowpack between the elevations of 1000 and 2000 m is the most sensitive to increases in temperature. Upper elevations were also affected, but to a lesser degree. Temperature increases are the primary driver of diminished snowpack accumulation, however variability in precipitation produce discernible changes in the timing and volumetric storage of snowpack. The results of this study are regionally relevant as melt water from the MRB's snowpack provides critical water supply for agriculture, ecosystems, and municipalities throughout the region especially in summer when water demand is high. While this research focused on one watershed, it serves as a case study examining the effects of climate change on maritime snow, which comprises 10% of the Earth's seasonal snow cover.


2017 ◽  
Vol 47 (3) ◽  
pp. 213-226 ◽  
Author(s):  
Ricardo DALAGNOL ◽  
Laura de Simone BORMA ◽  
Pedro MATEUS ◽  
Daniel Andres RODRIGUEZ

ABSTRACT Knowledge about water resources is critical for climate adaptation in face of long-term changes and more frequent extreme events occurrence. During the major droughts of 2005 and 2010, a large epicenter was located in the southwestern Amazon over the Purus River Basin. In this sense, we conducted a hydrological simulation in this basin to assess the climate change impacts on its water resources throughout the 21st century. The water balance was simulated using the Distributed Hydrological Model (MHD-INPE). The future climate projections were simulated by the regional ETA-INPE model driven by a 4-member HadCM3 global model regarding the A1B-AR4/IPCC scenario of greenhouse gases emissions. As simulated by the ETA-INPE/HadCM3, the 4-members mean response for the A1B scenario represents a rainfall reduction of up to 11.1%, a temperature increase of up to 4.4 °C, and a wind speed increase of up to 8.4% in the Purus Basin by the end of 21st century. Under these conditions, the discharge projections represent an overall 27% decrease in the Purus Basin with different patterns between dry and wet season, as well as changes in seasonality trends. The consequences of projected climate change are severe and will probably have a great impact upon natural ecosystem maintenance and human subsistence. In a climate change adaptation process, the preservation of the natural forest cover of the Purus Basin may have great importance in water retention.


Nativa ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 718
Author(s):  
Rafael Alexandre Sá ◽  
Marcos Koiti Kondo ◽  
Edson De Oliveira Vieira ◽  
Silvânio Rodrigues Dos Santos ◽  
Nayara Paula Andrade Vieira ◽  
...  

A simulação hidrológica de bacias hidrográficas tem se tornado uma ferramenta importante de planejamento e gestão de recursos hídricos, projetando-se inclusive a disponibilidade hídrica a partir das mudanças climáticas. Dessa forma, objetivou-se avaliar a eficiência do modelo hidrológico SWAT na simulação da vazão da bacia hidrográfica do rio Riachão, no Norte de Minas Gerais, sob impacto de cenários alternativos de elevação da temperatura média do ar. O modelo SWAT foi ajustado para o período de 01/01/2008 a 31/12/2014 e calibrado com os dados das vazões hidrometradas obtendo valores do coeficiente de eficiência Nash-Sutcliffe (NSE) de 0,74 e 0,79 e tendência percentual (PBIAS) 15,45% e 16,72%, nas fases de calibração e validação, respectivamente. A disponibilidade de água superficial da bacia hidrográfica para comparação dos cenários foi calculada por meio da curva de permanência da vazão de referência Q90, obtendo-se o valor de 0,081 m3 s-1 para o modelo calibrado. Os cenários de aumento da temperatura média da bacia em 1,5; 2,0; 3,0; 4,0 e 5,0 °C levaram ao decréscimo da Q90 em 7,66; 8,98; 10,49; 14,06 e 17,76%, respectivamente.Palavras-chave: escoamento superficial; modelo SWAT; cenários climáticos; gerenciamento de recursos hídricos. HYDROLOGICAL SIMULATION TOOL FOR MANAGEMENT OF WATER RESOURCES IN THE FUNCTION OF CLIMATE CHANGE IN THE RIACHÃO RIVER BASIN, MG, BRAZIL ABSTRACT: The hydrological simulation of watersheds becomes a major tool for planning and management of water resources, including water availability prediction from global climate change. Thus, the objective was to evaluate the efficiency of the SWAT hydrologic model to simulate the stream flow of Riachão river basin, North of Minas Gerais State, Brazil, under the impact of alternative scenarios with the increase in mean surface air temperature. The SWAT model was adjusted for 1/1/2008 to 12/31/2014 period and calibrated with data measurement obtaining values the Nash-Sutcliffe efficiency (NSE) of 0.74 and 0.79 and percent bias (PBIAS) of 15.45 and 16.72% was found to calibration and validation period, respectively. The surface water availability in the hydrographic basin was calculated by Q90 streamflow, with calibrated value of 0.081 m³s-1. The scenarios of increase in mean air temperature (1.5, 2.0, 3.0, 4.0 and 5.0 ºC) reduced Q90 by 7.66, 8.98, 10.49, 14.06 and 17.76%, respectively.Keywords: runoff; SWAT model; climate scenarios; water resource management.


Sign in / Sign up

Export Citation Format

Share Document