scholarly journals INVESTIGATIONS ON THE POTENTIAL OF HYPERSPECTRAL AND SENTINEL-2 DATA FOR LAND-COVER / LAND-USE CLASSIFICATION

Author(s):  
M. Weinmann ◽  
P. M. Maier ◽  
J. Florath ◽  
U. Weidner

<p><strong>Abstract.</strong> The automated analysis of large areas with respect to land-cover and land-use is nowadays typically performed based on the use of hyperspectral or multispectral data acquired from airborne or spaceborne platforms. While hyperspectral data offer a more detailed description of the spectral properties of the Earth’s surface and thus a great potential for a variety of applications, multispectral data are less expensive and available in shorter time intervals which allows for time series analyses. Particularly with the recent availability of multispectral Sentinel-2 data, it seems desirable to have a comparative assessment of the potential of both types of data for land-cover and land-use classification. In this paper, we focus on such a comparison and therefore involve both types of data. On the one hand, we focus on the potential of hyperspectral data and the commonly applied techniques for data-driven dimensionality reduction or feature selection based on these hyperspectral data. On the other hand, we aim to reason about the potential of Sentinel-2 data and therefore transform the acquired hyperspectral data to Sentinel-2-like data. For performance evaluation, we provide classification results achieved with the different types of data for two standard benchmark datasets representing an urban area and an agricultural area, respectively.</p>

2021 ◽  
Vol 13 (6) ◽  
pp. 3070
Author(s):  
Patrycja Szarek-Iwaniuk

Urbanization processes are some of the key drivers of spatial changes which shape and influence land use and land cover. The aim of sustainable land use policies is to preserve and manage existing resources for present and future generations. Increasing access to information about land use and land cover has led to the emergence of new sources of data and various classification systems for evaluating land use and spatial changes. A single globally recognized land use classification system has not been developed to date, and various sources of land-use/land-cover data exist around the world. As a result, data from different systems may be difficult to interpret and evaluate in comparative analyses. The aims of this study were to compare land-use/land-cover data and selected land use classification systems, and to determine the influence of selected classification systems and spatial datasets on analyses of land-use structure in the examined area. The results of the study provide information about the existing land-use/land-cover databases, revealing that spatial databases and land use and land cover classification systems contain many equivalent land-use types, but also differ in various respects, such as the level of detail, data validity, availability, number of land-use types, and the applied nomenclature.


2021 ◽  
Vol 13 (9) ◽  
pp. 1693
Author(s):  
Anushree Badola ◽  
Santosh K. Panda ◽  
Dar A. Roberts ◽  
Christine F. Waigl ◽  
Uma S. Bhatt ◽  
...  

Alaska has witnessed a significant increase in wildfire events in recent decades that have been linked to drier and warmer summers. Forest fuel maps play a vital role in wildfire management and risk assessment. Freely available multispectral datasets are widely used for land use and land cover mapping, but they have limited utility for fuel mapping due to their coarse spectral resolution. Hyperspectral datasets have a high spectral resolution, ideal for detailed fuel mapping, but they are limited and expensive to acquire. This study simulates hyperspectral data from Sentinel-2 multispectral data using the spectral response function of the Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) sensor, and normalized ground spectra of gravel, birch, and spruce. We used the Uniform Pattern Decomposition Method (UPDM) for spectral unmixing, which is a sensor-independent method, where each pixel is expressed as the linear sum of standard reference spectra. The simulated hyperspectral data have spectral characteristics of AVIRIS-NG and the reflectance properties of Sentinel-2 data. We validated the simulated spectra by visually and statistically comparing it with real AVIRIS-NG data. We observed a high correlation between the spectra of tree classes collected from AVIRIS-NG and simulated hyperspectral data. Upon performing species level classification, we achieved a classification accuracy of 89% for the simulated hyperspectral data, which is better than the accuracy of Sentinel-2 data (77.8%). We generated a fuel map from the simulated hyperspectral image using the Random Forest classifier. Our study demonstrated that low-cost and high-quality hyperspectral data can be generated from Sentinel-2 data using UPDM for improved land cover and vegetation mapping in the boreal forest.


2021 ◽  
pp. 70-77
Author(s):  
Т.К. МУЗЫЧЕНКО ◽  
М.Н. МАСЛОВА

В статье рассмотрено пространственное распределение типов земель в пределах трансграничного бассейна р. Раздольная. На основе дешифрирования космических снимков Sentinel-2 и Landsat 8 составлена карта пространственного распределения типов земель по состоянию на 2019 г. Исходя из геоэкологической классификации ландшафтов В.А. Николаева в данной работе было выделено 12 типов земель: используемые и неиспользуемые сельскохозяйственные земли, используемые и неиспользуемые рисовые поля, карьеры, леса, лесопосадки, рубки, луга, застроенные земли, водные объекты, а также кустарники и редколесья. Представлены абсолютные и относительные площади для каждого типа земель по трансграничному бассейну в целом, а также отдельно для его российской и китайской частей. По результатам дешифрирования данных дистанционного зондирования установлено, что российская и китайская части бассейна р. Раздольная имеют существенные трансграничные различия в структуре земель. На российской части бассейна лесами покрыто чуть более половины площади, но при этом значительные площади занимают сельскохозяйственные земли и луга. В некоторых местах луга и сельскохозяйственные земли преобладают в большей степени, чем леса. На китайской части лесные территории доминируют над другими типами земель. Сельскохозяйственные земли и луга образуют узкие и длинные полосы и имеют более мозаичное распространение, чем на российской части. Здесь заметно меньше площади застроенных земель, а площади рубок и лесопосадок больше, чем на российской части. Площади карьеров примерно равны в обеих частях бассейна. The transboundary Razdolnaya river basin is nearly evenly split up between Primorsky Krai of Russian Federation and Heilongjiang and Jilin provinces of People’s Republic of China. The Chinese and the Russian parts of the transboundary river have developed independently of each other. Therefore, the two have a different land cover and land use structure. The analysis of land cover and land use structure is of utmost importance for the understanding the modern state of land development and the possibilities of its future development. Using the remote sensing data, such as Sentinel-2 and Landsat 8 satellite imagery, the land cover and land use map of the Razdolnaya transboundary river basin for 2019 has been composed by means of the ArcMap 10.5 software package. According to V.A. Nikolaev’s geoecological classification of landscapes, we have identified 12 land types: forests, meadows, shrubs and woodlands, agricultural lands, unused agricultural lands, rice fields, unused rice fields, built-up areas, reforestation lands, logging, quarries, and bodies of water. We have provided area coverage for each type of land of the whole transboundary basin, and for the Russian and Chinese parts. According to the results of computer-aided visual deciphering and automatic deciphering, forests are the most common land use type in the basin. In the Chinese part of the basin, forests dominate over the other types of land. Agricultural lands and meadows have assumed narrow and linear shapes. Built-up areas have less coverage here than in the Russian part of the basin. However, the coverage of logging and reforestation lands is considerably larger than in the Russian part of the basin. In the Russian part of the basin, forests co-dominate with the agricultural lands and meadows. In some areas of this part of the basin forests disappear almost completely. The Russian part of the basin also has the larger coverage of shrubs and woodlands, unused agricultural lands, rice fields and unused rice fields. The coverage of quarries is roughly equal in both parts of the basin.


Author(s):  
Trinh Le Hung

The classification of urban land cover/land use is a difficult task due to the complexity in the structure of the urban surface. This paper presents the method of combining of Sentinel 2 MSI and Landsat 8 multi-resolution satellite image data for urban bare land classification based on NDBaI index. Two images of Sentinel 2 and Landsat 8 acquired closely together, were used to calculate the NDBaI index, in which sortware infrared band (band 11) of Sentinel 2 MSI image and thermal infrared band (band 10) of Landsat 8 image were used to improve the spatial resolution of NDBaI index. The results obtained from two experimental areas showed that, the total accuracy of classifying bare land from the NDBaI index which calculated by the proposed method increased by about 6% compared to the method using the NDBaI index, which is calculated using only Landsat 8 data. The results obtained in this study contribute to improving the efficiency of using free remote sensing data in urban land cover/land use classification.


2020 ◽  
Vol 202 ◽  
pp. 06036
Author(s):  
Nurhadi Bashit ◽  
Novia Sari Ristianti ◽  
Yudi Eko Windarto ◽  
Desyta Ulfiana

Klaten Regency is one of the regencies in Central Java Province that has an increasing population every year. This can cause an increase in built-up land for human activities. The built-up land needs to be monitored so that the construction is in accordance with the regional development plan so that it does not cause problems such as the occurrence of critical land. Therefore, it is necessary to monitor land use regularly. One method for monitoring land use is the remote sensing method. The remote sensing method is much more efficient in mapping land use because without having to survey the field. The remote sensing method utilizes satellite imagery data that can be processed for land use classification. This study uses the sentinel 2 satellite image data with the Object-Based Image Analysis (OBIA) algorithm to obtain land use classification. Sentinel 2 satellite imagery is a medium resolution image category with a spatial resolution of 10 meters. The land use classification can be used to see the distribution of built-up land in Klaten Regency without having to conduct a field survey. The results of the study obtained a segmentation scale parameter value of 60 and a merge scale parameter value of 85. The classification results obtained by 5 types of land use with OBIA. Agricultural land use dominates with an area of 50% of the total area.


Sign in / Sign up

Export Citation Format

Share Document