scholarly journals USING TIME SERIES OF SENTINEL-1 IMAGES TO PRODUCE DRY BATHYMETRY OF RIVERS

Author(s):  
P. Maillard

Abstract. A method is presented to produce river cross section profiles from a time series of Sentinel-1 images paired with water level data. Four programs are presented that generate river width data and cross section profiles from SAR or optical images. The programs generate a river bank and island width database with minimum manual intervention. Water level data from in situ stations are interpolated to match the width data and create elevation points from which the cross section profiles are produced. The method is fully described and tested on the São Francisco River in Brazil. The width data are plotted against discharge data to compare their progression. Over 1700 cross sections were produced and classified by their shape. Potential and limitations are presented.

2022 ◽  
pp. 1077-1097
Author(s):  
Nguyen Quang Dat ◽  
Ngoc Anh Nguyen Thi ◽  
Vijender Kumar Solanki ◽  
Ngo Le An

To control water resources in many domains such as agriculture, flood forecasting, and hydro-electrical dams, forecasting water level needs to predict. In this article, a new computational approach using a data driven model and time series is proposed to calculate the forecast water level in short time. Concretely, wavelet-artificial neural network (WAANN) and time series (TS) are combined together called WAANN-TS that encourages the advantage of each model. For this real time project work, Yen Bai station, Northwest Vietnam was chosen as an experimental case study to apply the proposed model. Input variables into the Wavelet-ANN structure is water level data. Time series and ANN models are built, and their performances are compared. The results indicate the greater accuracy of the proposed models at Hanoi station. The final proposal WAANN−TS for water level forecasting shows good performance with root mean square error (RMSE) from 10−10 to 10−11.


Author(s):  
Adib Mashuri Et.al

This study focused on chaotic analysis of water level data in different elevations located in the highland and lowland areas. This research was conducted considering the uncertain water level caused by the river flow from highland to lowland areas. The analysis was conducted using the data collected from the four area stations along Pahang River on different time scales which were hourly and daily time series data. The resulted findings were relevant to be used by the local authorities in water resource management in these areas. Two methods were used for the analysis process which included Cao method and phase space plot. Both methods are based on phase space reconstruction that is referring to reconstruction of one dimensional data (water level data) to d-dimensional phase space in order to determine the dynamics of the system. The combination of parameters  and d is required in phase space reconstruction. Results showed that (i) the combination of phase space reconstruction’s parameters gave a higher value of parameters by using hourly time scale compared to daily time scale for different elevation; (ii) different elevation gave impact on the values of phase space reconstructions’ parameters; (iii) chaotic dynamics existed using Cao method and phase space plot for different elevation and time scale. Hence, water level data with different time scale from different elevation in Pahang River can be used in the development of prediction model based on chaos approach.


2013 ◽  
Vol 10 (2) ◽  
pp. 2353-2371 ◽  
Author(s):  
H. Aksoy ◽  
N. E. Unal ◽  
E. Eris ◽  
M. I. Yuce

Abstract. In 1990s, water level in the closed-basin Lake Van located in the Eastern Anatolia, Turkey has risen up about 2 m. Analysis of the hydrometeorological shows that change in the water level is related to the water budget of the lake. In this study, a stochastic model is generated using the measured monthly water level data of the lake. The model is derived after removal of trend and periodicity in the data set. Trend observed in the lake water level time series is fitted by mono- and multiple-trend lines. For the multiple-trend, the time series is first divided into homogeneous segments by means of SEGMENTER, segmentation software. Four segments are found meaningful practically each fitted with a trend line. Two models considering mono- and multiple-trend time series are developed. The multiple-trend model is found better for planning future development in surrounding areas of the lake.


GeoEco ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 38
Author(s):  
Pipit Wijayanti ◽  
Rita Noviani

<p><em>This study aims to determine the potential of Duwet springs and their availability for supplying fresh water to the surrounding community. we use hydrographs to analyze aquifer characteristics. To analyze the hydrographs, we use water level and spring discharge data. Automatic Water Level Record (AWLR) records water level data for 1 dry season and 1 rainy season every 15 minutes. We use the volumetric method to measure the spring discharge 14 times. We compare the base flow and demand over a year to analyze the potential for fresh water. The results show that the Stage discharge rating curve y = 0.0002e5,453x with R² value of 0.87. Duwet Springs is a perennial spring that has a small discharge (class VI). The largest discharge ever recorded was 0.69 L/s (March 7, 2020) and the smallest recorded was 0.12 L/s (August 21, 2020). BFI value varied between 0.05 and 1 with mean 0.801. The total base flow is 2490675.734 L (rainy season) and 1563419.873 L (dry season). These springs are sufficient for 75% of the rainy season and 84% in the dry season. This indicates that the existence of Duwet springs is very important for the surrounding community.</em></p>


2011 ◽  
Vol 8 (1) ◽  
pp. 2103-2144 ◽  
Author(s):  
L. Giustarini ◽  
P. Matgen ◽  
R. Hostache ◽  
M. Montanari ◽  
D. Plaza ◽  
...  

Abstract. Satellite-based active microwave sensors not only provide synoptic overviews of flooded areas, but also offer an effective way to estimate spatially distributed river water levels. If rapidly produced and processed, these data can be used for updating hydraulic models in near real-time. The usefulness of such approaches with real event data sets provided by currently existing sensors has yet to be demonstrated. In this case study, a Particle Filter-based assimilation scheme is used to integrate ERS-2 SAR and ENVISAT ASAR-derived water level data into a one-dimensional (1-D) hydraulic model of the Alzette River. Two variants of the Particle Filter assimilation scheme are proposed with a global and local particle weighting procedure. The first option finds the best water stage line across all cross sections, while the second option finds the best solution at individual cross sections. The variant that is to be preferred depends on the level of confidence that is attributed to the observations or to the model. The results show that the Particle Filter-based assimilation of remote sensing-derived water elevation data provides a significant reduction to the model forecast uncertainty. Moreover, it is shown that the periodical updating of hydraulic models through the proposed assimilation scheme leads to an improvement of model predictions over several time steps. However, the performance of the assimilation depends on the skill of the hydraulic model and the quality of the observation data.


2011 ◽  
Vol 15 (7) ◽  
pp. 2349-2365 ◽  
Author(s):  
L. Giustarini ◽  
P. Matgen ◽  
R. Hostache ◽  
M. Montanari ◽  
D. Plaza ◽  
...  

Abstract. Satellite-based active microwave sensors not only provide synoptic overviews of flooded areas, but also offer an effective way to estimate spatially distributed river water levels. If rapidly produced and processed, these data can be used for updating hydraulic models in near real-time. The usefulness of such approaches with real event data sets provided by currently existing sensors has yet to be demonstrated. In this case study, a Particle Filter-based assimilation scheme is used to integrate ERS-2 SAR and ENVISAT ASAR-derived water level data into a one-dimensional (1-D) hydraulic model of the Alzette River. Two variants of the Particle Filter assimilation scheme are proposed with a global and local particle weighting procedure. The first option finds the best water stage line across all cross sections, while the second option finds the best solution at individual cross sections. The variant that is to be preferred depends on the level of confidence that is attributed to the observations or to the model. The results show that the Particle Filter-based assimilation of remote sensing-derived water elevation data provides a significant reduction in the uncertainty at the analysis step. Moreover, it is shown that the periodical updating of hydraulic models through the proposed assimilation scheme leads to an improvement of model predictions over several time steps. However, the performance of the assimilation depends on the skill of the hydraulic model and the quality of the observation data.


2020 ◽  
Author(s):  
Naoki Koyama ◽  
Tadashi Yamada

&lt;p&gt;The aim of this paper is to verify the accuracy of the real-time flood prediction model, using the time-series analysis. Forecast information of water level is important information that encourages residents to evacuate. Generally, flood forecasting is conducted by using runoff analysis. However, in developing countries, there are not enough hydrological data in a basin. Therefore, this study assumes where poor hydrologic data basin and evaluates it through reproducibility and prediction by using time series analysis which statistical model with the water level data and rainfall data. The model is applied to the one catchment of the upper Tone River basin, one of the first grade river in Japan. This method is possible to reproduce hydrograph, if the observation stations exist several points in the basin. And using the estimated parameters from past flood events, we can apply this method to predict the water level until the flood concentration time which the reference point and observation station. And until this time, the peak water level can be predicted with the accuracy of several 10cm. Prediction can be performed using only water level data, but by adding rainfall data, prediction can be performed for a longer time.&lt;/p&gt;


2021 ◽  
Vol 3 ◽  
Author(s):  
Aaron D. Sweeney

We demonstrate that data abstraction via a timeline visualization is highly effective at allowing one to discover patterns in the underlying data. We describe the rapid identification of data gaps in the archival time-series records of deep-ocean pressure and coastal water level observations collected to support the NOAA Tsunami Program and successful measures taken to rescue these data. These data gaps had persisted for years prior to the development of timeline visualizations to represent when data were collected. This approach can be easily extended to all types of time-series data and the author recommends this type of temporal visualization become a routine part of data management, whether one collects data or archives data.


2013 ◽  
Vol 17 (6) ◽  
pp. 2297-2303 ◽  
Author(s):  
H. Aksoy ◽  
N. E. Unal ◽  
E. Eris ◽  
M. I. Yuce

Abstract. In the 1990s, water level in the closed-basin Lake Van located in the Eastern Anatolia, Turkey, has risen up about 2 m. Analysis of the hydrometeorological data shows that change in the water level is related to the water budget of the lake. In this study, stochastic models are proposed for simulating monthly water level data. Two models considering mono- and multiple-trend time series are developed. The models are derived after removal of trend and periodicity in the dataset. Trend observed in the lake water level time series is fitted by mono- and multiple-trend lines. In the so-called mono-trend model, the time series is treated as a whole under the hypothesis that the lake water level has an increasing trend. In the second model (so-called multiple-trend), the time series is divided into a number of segments to each a linear trend can be fitted separately. Application on the lake water level data shows that four segments, each fitted with a trend line, are meaningful. Both the mono- and multiple-trend models are used for simulation of synthetic lake water level time series under the hypothesis that the observed mono- and multiple-trend structure of the lake water level persist during the simulation period. The multiple-trend model is found better for planning the future infrastructural projects in surrounding areas of the lake as it generates higher maxima for the simulated lake water level.


Sign in / Sign up

Export Citation Format

Share Document