scholarly journals EVALUATION AND OPTIMISATION OF CROWD-BASED COLLECTION OF TREES FROM 3D POINT CLOUDS

Author(s):  
V. Walter ◽  
M. Kölle ◽  
Y. Yin

Abstract. The term "Crowdsourcing" goes back to Jeff Howe (Howe, 2006) and represents a neologism of the words "crowd" and "outsourcing". Unlike outsourcing, where companies outsource certain tasks to known third parties, crowdsourcing outsources tasks to unknown workers (crowdworkers) on the Internet. This allows companies to access large numbers of workers who would otherwise not be available. In this paper, we will discuss an approach for the crowd-based collection of trees by means of minimum bounding cylinders from 3D point clouds. We will demonstrate the used web-interface and compare the results with reference data. To improve the quality of the results, we collect the data not only once but multiple times. This enables us to implement a so-called “Wisdom of the Crowd” approach where we can identify automatically outliers and derive integrated cylinders. We will show in this paper that this approach increases significantly the quality of the results.

Author(s):  
N. Tyagur ◽  
M. Hollaus

During the last ten years, mobile laser scanning (MLS) systems have become a very popular and efficient technology for capturing reality in 3D. A 3D laser scanner mounted on the top of a moving vehicle (e.g. car) allows the high precision capturing of the environment in a fast way. Mostly this technology is used in cities for capturing roads and buildings facades to create 3D city models. In our work, we used an MLS system in Moravian Karst, which is a protected nature reserve in the Eastern Part of the Czech Republic, with a steep rocky terrain covered by forests. For the 3D data collection, the Riegl VMX 450, mounted on a car, was used with integrated IMU/GNSS equipment, which provides low noise, rich and very dense 3D point clouds. <br><br> The aim of this work is to create a digital terrain model (DTM) from several MLS data sets acquired in the neighbourhood of a road. The total length of two covered areas is 3.9 and 6.1 km respectively, with an average width of 100 m. For the DTM generation, a fully automatic, robust, hierarchic approach was applied. The derivation of the DTM is based on combinations of hierarchical interpolation and robust filtering for different resolution levels. For the generation of the final DTMs, different interpolation algorithms are applied to the classified terrain points. The used parameters were determined by explorative analysis. All MLS data sets were processed with one parameter set. As a result, a high precise DTM was derived with high spatial resolution of 0.25 x 0.25 m. The quality of the DTMs was checked by geodetic measurements and visual comparison with raw point clouds. The high quality of the derived DTM can be used for analysing terrain changes and morphological structures. Finally, the derived DTM was compared with the DTM of the Czech Republic (DMR 4G) with a resolution of 5 x 5 m, which was created from airborne laser scanning data. The vertical accuracy of the derived DTMs is around 0.10 m.


Author(s):  
S. Hofmann ◽  
C. Brenner

Mobile mapping data is widely used in various applications, what makes it especially important for data users to get a statistically verified quality statement on the geometric accuracy of the acquired point clouds or its processed products. The accuracy of point clouds can be divided into an absolute and a relative quality, where the absolute quality describes the position of the point cloud in a world coordinate system such as WGS84 or UTM, whereas the relative accuracy describes the accuracy within the point cloud itself. Furthermore, the quality of processed products such as segmented features depends on the global accuracy of the point cloud but mainly on the quality of the processing steps. Several data sources with different characteristics and quality can be thought of as potential reference data, such as cadastral maps, orthophoto, artificial control objects or terrestrial surveys using a total station. In this work a test field in a selected residential area was acquired as reference data in a terrestrial survey using a total station. In order to reach high accuracy the stationing of the total station was based on a newly made geodetic network with a local accuracy of less than 3 mm. The global position of the network was determined using a long time GNSS survey reaching an accuracy of 8 mm. Based on this geodetic network a 3D test field with facades and street profiles was measured with a total station, each point with a two-dimensional position and altitude. In addition, the surface of poles of street lights, traffic signs and trees was acquired using the scanning mode of the total station. &lt;br&gt;&lt;br&gt; Comparing this reference data to the acquired mobile mapping point clouds of several measurement campaigns a detailed quality statement on the accuracy of the point cloud data is made. Additionally, the advantages and disadvantages of the described reference data source concerning availability, cost, accuracy and applicability are discussed.


Author(s):  
N. Tyagur ◽  
M. Hollaus

During the last ten years, mobile laser scanning (MLS) systems have become a very popular and efficient technology for capturing reality in 3D. A 3D laser scanner mounted on the top of a moving vehicle (e.g. car) allows the high precision capturing of the environment in a fast way. Mostly this technology is used in cities for capturing roads and buildings facades to create 3D city models. In our work, we used an MLS system in Moravian Karst, which is a protected nature reserve in the Eastern Part of the Czech Republic, with a steep rocky terrain covered by forests. For the 3D data collection, the Riegl VMX 450, mounted on a car, was used with integrated IMU/GNSS equipment, which provides low noise, rich and very dense 3D point clouds. &lt;br&gt;&lt;br&gt; The aim of this work is to create a digital terrain model (DTM) from several MLS data sets acquired in the neighbourhood of a road. The total length of two covered areas is 3.9 and 6.1 km respectively, with an average width of 100 m. For the DTM generation, a fully automatic, robust, hierarchic approach was applied. The derivation of the DTM is based on combinations of hierarchical interpolation and robust filtering for different resolution levels. For the generation of the final DTMs, different interpolation algorithms are applied to the classified terrain points. The used parameters were determined by explorative analysis. All MLS data sets were processed with one parameter set. As a result, a high precise DTM was derived with high spatial resolution of 0.25 x 0.25 m. The quality of the DTMs was checked by geodetic measurements and visual comparison with raw point clouds. The high quality of the derived DTM can be used for analysing terrain changes and morphological structures. Finally, the derived DTM was compared with the DTM of the Czech Republic (DMR 4G) with a resolution of 5 x 5 m, which was created from airborne laser scanning data. The vertical accuracy of the derived DTMs is around 0.10 m.


Author(s):  
Robert Niederheiser ◽  
Martin Mokroš ◽  
Julia Lange ◽  
Helene Petschko ◽  
Günther Prasicek ◽  
...  

Terrestrial photogrammetry nowadays offers a reasonably cheap, intuitive and effective approach to 3D-modelling. However, the important choice, which sensor and which software to use is not straight forward and needs consideration as the choice will have effects on the resulting 3D point cloud and its derivatives. <br><br> We compare five different sensors as well as four different state-of-the-art software packages for a single application, the modelling of a vegetated rock face. The five sensors represent different resolutions, sensor sizes and price segments of the cameras. The software packages used are: (1) Agisoft PhotoScan Pro (1.16), (2) Pix4D (2.0.89), (3) a combination of Visual SFM (V0.5.22) and SURE (1.2.0.286), and (4) MicMac (1.0). We took photos of a vegetated rock face from identical positions with all sensors. Then we compared the results of the different software packages regarding the ease of the workflow, visual appeal, similarity and quality of the point cloud. <br><br> While PhotoScan and Pix4D offer the user-friendliest workflows, they are also “black-box” programmes giving only little insight into their processing. Unsatisfying results may only be changed by modifying settings within a module. The combined workflow of Visual SFM, SURE and CloudCompare is just as simple but requires more user interaction. MicMac turned out to be the most challenging software as it is less user-friendly. However, MicMac offers the most possibilities to influence the processing workflow. The resulting point-clouds of PhotoScan and MicMac are the most appealing.


Author(s):  
M. Vlachos ◽  
D. Skarlatos ◽  
P. Bodin

<p><strong>Abstract.</strong> The main idea of this particular study was to validate if the new FOVEON technology implemented by sigma cameras can provide better overall results and outperform the traditional Bayer pattern sensor cameras regarding the radiometric information that records as well as the photogrammetric point cloud quality that can provide. Based on that, the scope of this paper is separated into two evaluations. First task is to evaluate the quality of information reconstructed during de-mosaicking step for Bayer pattern cameras by detecting potential additional colour distortion added during the de-mosaicking step, and second task is the geometric comparisons of point clouds generated by the photos by Bayer and FOVEON sensors against a reference point cloud. The first phase of the study is done using various de-mosaicking algorithms to process various artificial Bayern pattern images and then compare them with reference FOVEON images. The second phase of the study is carried on by reconstructing 3D point clouds of the same objects captured by a Bayer and a FOVEON sensor respectively and then comparing the various point clouds with a reference one, generated by a structured light hand-held scanner. The comparison is separated into two parts, where initially we evaluate five separate point clouds (RGB, Gray, Red, Green, Blue) for each camera sensor per site and then a second comparison is evaluated on colour classified RGB point cloud segments.</p>


Author(s):  
Y.-C. Lin ◽  
D. Bullock ◽  
A. Habib

Abstract. Roadside ditches serve an important role for draining storm water. Over time vegetation growth, natural sediment deposits, and other debris can change grade of ditches. Effectively monitoring and identifying these changes to prioritize ditch maintenance is important from both a pavement preservation perspective and prevention of localized flooding. This study evaluates the performance of two mobile LiDAR systems for mapping the cross-section of roadside ditches in the presence of vegetation. The geometric quality of data collected by two different wheel-based LiDAR systems were investigated. The mapped ditches were reported and visualized in 2D images as well as 3D point clouds. The cross-sections of man-made drainage ditches were extracted and the quality of mapped ditches was assessed against Real-Time Kinematic Global Navigation Satellite Systems (RTK-GNSS) survey. The overall point cloud accuracy was 4 cm for the medium-grade system, and 1 cm for the high-grade system. The mapping accuracy is 2 cm (medium-grade system) and 1 cm (high-grade system) for solid surface. For rough mowed areas and areas with significant vegetation, the vertical accuracy was found to be 7 cm and 11 cm, respectively, for both wheel-based systems.


Author(s):  
Mustafa Ozendi ◽  
Devrim Akca ◽  
Hüseyin Topan

The random error pattern of point clouds has significant effect on the quality of final 3D model. The magnitude and distribution of random errors should be modelled numerically. This work aims at developing such an anisotropic point error model, specifically for the terrestrial laser scanner (TLS) acquired 3D point clouds. A priori precisions of basic TLS observations, which are the range, horizontal angle and vertical angle, are determined by predefined and practical measurement configurations, performed at real-world test environments. A priori precision of horizontal (𝜎&lt;sub&gt;𝜃&lt;/sub&gt;) and vertical (𝜎&lt;sub&gt;𝛼&lt;/sub&gt;) angles are constant for each point of a data set, and can directly be determined through the repetitive scanning of the same environment. In our practical tests, precisions of the horizontal and vertical angles were found as 𝜎&lt;sub&gt;𝜃&lt;/sub&gt;=±36.6&lt;sup&gt;𝑐𝑐&lt;/sup&gt; and 𝜎&lt;sub&gt;𝛼&lt;/sub&gt;=±17.8&lt;sup&gt;𝑐𝑐&lt;/sup&gt;, respectively. On the other hand, a priori precision of the range observation (𝜎&lt;sub&gt;𝜌&lt;/sub&gt;) is assumed to be a function of range, incidence angle of the incoming laser ray, and reflectivity of object surface. Hence, it is a variable, and computed for each point individually by employing an empirically developed formula varying as 𝜎&lt;sub&gt;𝜌&lt;/sub&gt;=±2−12 𝑚𝑚 for a FARO Focus X330 laser scanner. This procedure was followed by the computation of error ellipsoids of each point using the law of variance-covariance propagation. The direction and size of the error ellipsoids were computed by the principal components transformation. The usability and feasibility of the model was investigated in real world scenarios. These investigations validated the suitability and practicality of the proposed method.


Author(s):  
F. He ◽  
A. Habib ◽  
A. Al-Rawabdeh

In this paper, we proposed a new refinement procedure for the semi-global dense image matching. In order to remove outliers and improve the disparity image derived from the semi-global algorithm, both the local smoothness constraint and point cloud segments are utilized. Compared with current refinement technique, which usually assumes the correspondences between planar surfaces and 2D image segments, our proposed approach can effectively deal with object with both planar and curved surfaces. Meanwhile, since 3D point clouds contain more precise geometric information regarding to the reconstructed objects, the planar surfaces identified in our approach can be more accurate. In order to illustrate the feasibility of our approach, several experimental tests are conducted on both Middlebury test and real UAV-image datasets. The results demonstrate that our approach has a good performance on improving the quality of the derived dense image-based point cloud.


Author(s):  
S. Hofmann ◽  
C. Brenner

Mobile mapping data is widely used in various applications, what makes it especially important for data users to get a statistically verified quality statement on the geometric accuracy of the acquired point clouds or its processed products. The accuracy of point clouds can be divided into an absolute and a relative quality, where the absolute quality describes the position of the point cloud in a world coordinate system such as WGS84 or UTM, whereas the relative accuracy describes the accuracy within the point cloud itself. Furthermore, the quality of processed products such as segmented features depends on the global accuracy of the point cloud but mainly on the quality of the processing steps. Several data sources with different characteristics and quality can be thought of as potential reference data, such as cadastral maps, orthophoto, artificial control objects or terrestrial surveys using a total station. In this work a test field in a selected residential area was acquired as reference data in a terrestrial survey using a total station. In order to reach high accuracy the stationing of the total station was based on a newly made geodetic network with a local accuracy of less than 3 mm. The global position of the network was determined using a long time GNSS survey reaching an accuracy of 8 mm. Based on this geodetic network a 3D test field with facades and street profiles was measured with a total station, each point with a two-dimensional position and altitude. In addition, the surface of poles of street lights, traffic signs and trees was acquired using the scanning mode of the total station. <br><br> Comparing this reference data to the acquired mobile mapping point clouds of several measurement campaigns a detailed quality statement on the accuracy of the point cloud data is made. Additionally, the advantages and disadvantages of the described reference data source concerning availability, cost, accuracy and applicability are discussed.


2019 ◽  
Vol 52 (8) ◽  
pp. 403-408 ◽  
Author(s):  
Thomas Wiemann ◽  
Felix Igelbrink ◽  
Sebastian Pütz ◽  
Joachim Hertzberg

Sign in / Sign up

Export Citation Format

Share Document