scholarly journals APPLICATION OF THE TERRA MODIS SATELLITE DATA FOR ENVIRONMENTAL MONITORING IN WESTERN SIBERIA

Author(s):  
I. G. Yashchenkoa ◽  
T. O. Peremitina

Using the MODIS thematic products, the status of vegetation of oil producing areas in Western Siberia for the period 2010-2015 is monitored. An approach for estimating the impact of various factors on the ecology of oil producing areas using the NDVI coefficient and remote sensing data on the status of vegetation is proposed. The approach is tested within four technologically-disturbed lands – four oil fields, Krapivinskoye, Myldzhenskoye, Luginetskoye, and Urmanskoye in Tomsk region. The territory of the Oglatsky Status Nature Reserve of regional importance is investigated as a reference area.

Author(s):  
I. G. Yashchenkoa ◽  
T. O. Peremitina

Using the MODIS thematic products, the status of vegetation of oil producing areas in Western Siberia for the period 2010-2015 is monitored. An approach for estimating the impact of various factors on the ecology of oil producing areas using the NDVI coefficient and remote sensing data on the status of vegetation is proposed. The approach is tested within four technologically-disturbed lands – four oil fields, Krapivinskoye, Myldzhenskoye, Luginetskoye, and Urmanskoye in Tomsk region. The territory of the Oglatsky Status Nature Reserve of regional importance is investigated as a reference area.


2021 ◽  
Vol 13 (10) ◽  
pp. 2014
Author(s):  
Celina Aznarez ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Juan Pablo Pacheco ◽  
Javier Senent-Aparicio

Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.


2021 ◽  
Vol 13 (11) ◽  
pp. 2172
Author(s):  
Sarah Carter ◽  
Martin Herold ◽  
Inge Jonckheere ◽  
Andres Espejo ◽  
Carly Green ◽  
...  

Four workshops and a webinar series were organized, with the aim of building capacity in countries to use Earth Observation Remote Sensing data to monitor forest cover changes and measure emissions reductions for REDD+ results-based payments. Webinars and workshops covered a variety of relevant tools and methods. The initiative was collaboratively organised by a number of Global Forest Observations Initiative (GFOI) partner institutions with funding from the World Bank’s Forest Carbon Partnership Facility (FCPF). The collaborative approach with multiple partners proved to be efficient and was able to reach a large audience, particularly in the case of the webinars. However, the impact in terms of use of tools and training of others after the events was higher for the workshops. In addition, engagement with experts was higher from workshop participants. In terms of efficiency, webinars are significantly cheaper to organize. A hybrid approach might be considered for future initiatives; and, this study of the effectiveness of both in-person and online capacity building can guide the development of future initiatives, something that is particularly pertinent in a COVID-19 era.


2021 ◽  
Vol 10 (3) ◽  
pp. 185
Author(s):  
Chenyang Zhang ◽  
Qingli Shi ◽  
Li Zhuo ◽  
Fang Wang ◽  
Haiyan Tao

Information on the mixed use of buildings helps understand the status of mixed-use urban vertical land and assists in urban planning decisions. Although a few studies have focused on this topic, the methods they used are quite complex and require manual intervention in extracting different function patterns of buildings, while building recognition rates remain unsatisfying. In this paper, we propose a new method to infer the mixed use of buildings based on a tensor decomposition algorithm, which integrates information from both high-resolution remote sensing images and social sensing data. We selected the Tianhe District of Guangzhou, China to validate our method. The results show that the recognition rate of buildings can reach 98.67%, with an average recognition accuracy of 84%. Our study proves that the tensor decomposition algorithm can extract different function patterns of buildings unsupervised, while remote sensing data can provide key information for inferring building functions. The tensor decomposition-based method can serve as an effective and efficient way to infer the mixed use of buildings, which can achieve better results with simpler steps.


2021 ◽  
pp. 68-80
Author(s):  
V. Landin ◽  
O. Tishchenko ◽  
V. Gurelia ◽  
T. Kuchma ◽  
V. Feshchenko

This article presents the results of assessing the impact of fires on the vegetation of the Chernobyl Exclusion Zone and the zone of unconditional (mandatory) resettlement, Drevlyansky Nature Reserve using means of remote sensing of the Earth for the period from 1986 to 2020. The methods and criteria for assessing vegetation damage using spectral data obtained from space satellites of the Earth and using methods of geoinformation technologies are proposed. This methodology provides mapping vegetation through remote sensing imagery. Comparing space images of the territory of the exclusion zone and the zone of unconditional mandatory resettlement for 1986, 1999, 2013, 2017, 2018, 2019, 2020, for the period of 34 years after the accident, identified significant changes in the condition of lands belonging to forest and agricultural lands. In the result of the study revealed the changes observed in the boundaries of water bodies because drying of artificial reservoirs, changes in the direction of riverbeds, waterlogging of drainage canals and adjacent forest areas. The identified effect from fires in forests where dry forest materials have accumulated and from consequences of forest management. It is also noted, that according to the spectral data of space images, areas of forest damaged by insects are well defined. The study reveals


2021 ◽  
Vol 6 ◽  
pp. 24-31
Author(s):  
Dmitry A. Baikin

The article analyzes the impact of oil spills on natural objects according to the remote sensing system Sentinel-2 in Eastern Siberia. Remote sensing data analysis is used to detect traces of oil products in the accident area. Conclusions about the usage of Sentinel-2 data for detecting traces of oil products were made.


2020 ◽  
Vol 9 (7) ◽  
pp. 457
Author(s):  
Aspasia Litoseliti ◽  
Ioannis K. Koukouvelas ◽  
Konstantinos G. Nikolakopoulos ◽  
Vasiliki Zygouri

Assessment of landslide hazard across mountains is imperative for public safety. Pre- and post-earthquake landslide mapping envisage that landslides show significant size changes during earthquake activity. One of the purposes of earthquake-induced landslide investigation is to determine the landslide state and geometry and draw conclusions on their mobility. This study was based on remote sensing data that covered 72 years, and focused on the west slopes of the Skolis Mountains, in the northwest Peloponnese. On 8 June 2008, during the strong Movri Mountain earthquake (Mw = 6.4), we mapped the extremely abundant landslide occurrence. Historical seismicity and remote sensing data indicate that the Skolis Mountain west slope is repeatedly affected by landslides. The impact of the earthquakes was based on the estimation of Arias intensity in the study area. We recognized that 89 landslides developed over the last 72 years. These landslides increased their width (W), called herein as inflation or their length (L), termed as enlargement. Length and width changes were used to describe their aspect ratio (L/W). Based on the aspect ratio, the 89 landslides were classified into three types: I, J, and Δ. Taluses, developed at the base of the slope and belonging to the J- and Δ-landslide types, are supplied by narrow or irregular channels. During the earthquakes, the landslide channels migrated upward and downward, outlining the mobility of the earthquake-induced landslides. Landslide mobility was defined by the reach angle. The reach angle is the arctangent of the landslide’s height to length ratio. Furthermore, we analyzed the present slope stability across the Skolis Mountain by using the landslide density (LD), landslide area percentage (LAP), and landslide frequency (LF). All these parameters were used to evaluate the spatial and temporal landslide distribution and evolution with the earthquake activity. These results can be considered as a powerful tool for earthquake-induced landslide disaster mitigation


2020 ◽  
Author(s):  
Michael Fromm ◽  
George Kablick III

<p>The 2019/2020 fire season in Australia has been unusually energetic since early spring. In the last days of December and early January an unprecedented number of pyrocumulonimbus (pyroCb) storms erupted in New South Wales and Victoria, creating a seemingly unrivaled stratospheric smoke plume as well as devastation on the ground. Preliminary indications from satellite remote sensing are that the clustering of active pyroCbs and smoke injection heights exceeded all previous Australian pyroCb events, and perhaps pyroCb events worldwide. Similar to another extraordinary pyroCb event, the so-called Pacific Northwest Event in 2017, the Australian smoke plume has been observed to rise above its injection altitude by several kilometers. We report on the active blowups and quantify the impact on stratospheric composition using satellite remote sensing. Our analysis also consists of a quantitative comparison of the 2019/20 Australian pyrocb event with other major pyroCb events such as Black Saturday, Victoria, Australia in 2009. At the time of submission of this abstract, this is an unfolding episode; our report will characterize the unusual nature of this pyroCb event as the evolving plume and satellite remote sensing data permit.</p>


Sign in / Sign up

Export Citation Format

Share Document