The Massive New Year 2020 pyroCb Event in Australia: Observations of Unprecedented Stratospheric Smoke

Author(s):  
Michael Fromm ◽  
George Kablick III

<p>The 2019/2020 fire season in Australia has been unusually energetic since early spring. In the last days of December and early January an unprecedented number of pyrocumulonimbus (pyroCb) storms erupted in New South Wales and Victoria, creating a seemingly unrivaled stratospheric smoke plume as well as devastation on the ground. Preliminary indications from satellite remote sensing are that the clustering of active pyroCbs and smoke injection heights exceeded all previous Australian pyroCb events, and perhaps pyroCb events worldwide. Similar to another extraordinary pyroCb event, the so-called Pacific Northwest Event in 2017, the Australian smoke plume has been observed to rise above its injection altitude by several kilometers. We report on the active blowups and quantify the impact on stratospheric composition using satellite remote sensing. Our analysis also consists of a quantitative comparison of the 2019/20 Australian pyrocb event with other major pyroCb events such as Black Saturday, Victoria, Australia in 2009. At the time of submission of this abstract, this is an unfolding episode; our report will characterize the unusual nature of this pyroCb event as the evolving plume and satellite remote sensing data permit.</p>

2020 ◽  
Vol 33 (2) ◽  
pp. 184-195
Author(s):  
Cahyadi Setiawan ◽  
Muzani Muzani ◽  
Warnadi Warnadi ◽  
Fauzi Ramadhoan A'Rachman ◽  
Qismaraga Qismaraga ◽  
...  

The purpose of this study was to determine the extent of changes in land cover around the Mount Sinabung area after the 2009-2019 eruption by monitoring through remote sensing imagery and GIS. The method used in this research is descriptive quantitative. The technique of data collection used document study techniques by collecting Landsat images are among the widely used satellite remote sensing data and their spectral, spatial and temporal resolution made them useful input for mapping and planning projects (Sadidy et al. 1981). Changes in land cover that occurred around the Mount Sinabung area were dominated by pyroclastic material due to eruption. In addition, changes in land cover also occur due to the abandonment of potential lands, such as local residents who work in the plantation sector are forced to leave that, so they eventually turn into shrubs. The direction of the dominant pyroclastic material slides was directed towards the east-south and southeast of Mount Sinabung, where the area was dominated by the plantation sector. The impact of the eruption of Mount Sinabung was directly and indirectly. The total land cover changes due to pyroclastic material in 2010 was an area of 26.27 Ha, in 2014 it was 475.82 Ha, 2017 was 1339.75 Ha, and 2019 was 1196.11 Ha.


2011 ◽  
Vol 16 (6) ◽  
pp. 751-773 ◽  
Author(s):  
Xiangzheng Deng ◽  
Jikun Huang ◽  
Qiuqiong Huang ◽  
Scott Rozelle ◽  
John Gibson

AbstractWe use satellite remote sensing data of grassland cover in Inner Mongolia, China to test whether the existence of and the size of roads in 1995 is associated with the nature of the grassland in 2000 and/or if it affects the rate of change of the grassland between 1995 and 2000. The regression results show that the impact of roads on grassland cover depends on the nature of the resource. When the grassland is composed of relatively high quality grassland, roads lead to degradation, whereas when grassland resources are sparse, access to a road results in the restoration of the resource.


Author(s):  
H. Lilienthal ◽  
A. Brauer ◽  
K. Betteridge ◽  
E. Schnug

Conversion of native vegetation into farmed grassland in the Lake Taupo catchment commenced in the late 1950s. The lake's iconic value is being threatened by the slow decline in lake water quality that has become apparent since the 1970s. Keywords: satellite remote sensing, nitrate leaching, land use change, livestock farming, land management


1996 ◽  
pp. 51-54 ◽  
Author(s):  
N. V. M. Unni

The recognition of versatile importance of vegetation for the human life resulted in the emergence of vegetation science and many its applications in the modern world. Hence a vegetation map should be versatile enough to provide the basis for these applications. Thus, a vegetation map should contain not only information on vegetation types and their derivatives but also the geospheric and climatic background. While the geospheric information could be obtained, mapped and generalized directly using satellite remote sensing, a computerized Geographic Information System can integrate it with meaningful vegetation information classes for large areas. Such aft approach was developed with respect to mapping forest vegetation in India at. 1 : 100 000 (1983) and is in progress now (forest cover mapping at 1 : 250 000). Several review works reporting the experimental and operational use of satellite remote sensing data in India were published in the last years (Unni, 1991, 1992, 1994).


Author(s):  
Nathalie Pettorelli

This book intends to familiarise prospective users in the environmental community with satellite remote sensing technology and its applications, introducing terminology and principles behind satellite remote sensing data and analyses. It provides a detailed overview of the possible applications of satellite data in natural resource management, demonstrating how ecological knowledge and satellite-based information can be effectively combined to address a wide array of current natural resource management needs. Topics considered include the use of satellite data to monitor the various dimensions of biodiversity; the use of this technology to track pressures on biodiversity such as invasive species, pollution, and illegal fishing; the utility of satellite remote sensing to inform the management of protected areas, translocation, and habitat restoration; and the contribution of satellite remote sensing towards the monitoring of ecosystem services and wellbeing. The intended audience is ecologists and environmental scientists; the book is targeted as a handbook and is therefore also suitable for advanced undergraduate and postgraduate students in the biological and ecological sciences, as well as policy makers and specialists in the fields of conservation biology, biodiversity monitoring, and natural resource management. The book assumes no prior technical knowledge of satellite remote sensing systems and products. It is written so as to generate interest in the ecological, environmental management, and remote sensing communities, highlighting issues associated with the emergence of truly synergistic approaches between these disciplines.


2021 ◽  
Vol 13 (10) ◽  
pp. 2014
Author(s):  
Celina Aznarez ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Juan Pablo Pacheco ◽  
Javier Senent-Aparicio

Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.


Sign in / Sign up

Export Citation Format

Share Document