scholarly journals POINT CLOUD SEGMENTATION AND FILTERING TO VERIFY THE GEOMETRIC GENESIS OF SIMPLE AND COMPOSED VAULTS

Author(s):  
E. Lanzara ◽  
A. Samper ◽  
B. Herrera

<p><strong>Abstract.</strong> This research work proposes a methodology to statistically determine the geometric configuration of a masonry cross vault. Within Cultural Heritage it is possible to find architectural elements with absent or scarce historical sources about design approach or construction techniques. The cross vault case study belongs to a partially destroyed vaulted system distributed along the aisles of ancient Assunta’s Cathedral which is part of the Aragonese Castle on Ischia island, near Naples (Italy). Using photogrammetrical data acquisition, standard geometric analysis, numerical processes, computing and statistics this paper shows a method to objectively determine the geometric shape which best fits one of the existing Cathedral vault according to critical interpretation about stylistic and cultural contents linked to specific geographical and temporal contexts. This paper provides explanations, methods and objective calculation algorithms to find the best-fitting shape for a generic given point cloud and it is aimed at demonstrating the complementarity between descriptive geometry and algorithmic mathematical approaches. The final product of this multidisciplinary workflow is a 3D model deriving from the comparison between an ideal automatic model built thanks to the translation of traditional geometric rules in visual scripting language and an automatic model deriving from the mathematical analysis of survey data, curves and surface, of the architectural element. This experimentation generates 3D models to perform in-depth multidisciplinary tests and AR and VR applications to promote the communication of destroyed or inaccessible cultural heritage.</p>

Author(s):  
A. Mostafavi ◽  
M. Scaioni ◽  
V. Yordanov

Abstract. The realistic possibility of using non-metric digital cameras to achieve reliable 3D models has eased the application of photogrammetry in different domains. Documentation, conservation and dissemination of the Cultural Heritage (CH) can be obtained and implemented through virtual copies and replicas. Structure-from-Motion (SfM) photogrammetry has widely proven its impressive potential for image-based 3D reconstruction resulting in great 3D point clouds’ acquisitions but at minimal cost. Images from Unmanned Aerial Vehicles (UAVs) can be also processed within SfM pipeline to obtain point cloud of Cultural Heritage sites in remote regions. Both aerial and terrestrial images can be integrated to obtain a more complete 3D. In this paper, the application of SfM photogrammetry for surveying of the Ziggurat Chogha Zanbil in Iran is presented. Here point clouds have been derived from oblique and nadir photos captured from UAV as well as terrestrial photos. The obtained four point clouds have been compared on the basis of different techniques to highlight differences among them.


2011 ◽  
Vol 6 ◽  
pp. 10-17 ◽  
Author(s):  
Giorgio Agugiaro ◽  
Fabio Remondino ◽  
Gabrio Girardi ◽  
Jennifer Von Schwerin ◽  
Heather Richards-Rissetto ◽  
...  

Constant improvements in the field of surveying, computing and distribution of digital-content are reshaping the way Cultural Heritage can be digitised and virtually accessed, even remotely via web. A traditional 2D approach for data access, exploration, retrieval and exploration may generally suffice, however more complex analyses concerning spatial and temporal features require 3D tools, which, in some cases, have not yet been implemented or are not yet generally commercially available. Efficient organisation and integration strategies applicable to the wide array of heterogeneous data in the field of Cultural Heritage represent a hot research topic nowadays. This article presents a visualisation and query tool (QueryArch3D) conceived to deal with multi-resolution 3D models. Geometric data are organised in successive levels of detail (LoD), provided with geometric and semantic hierarchies and enriched with attributes coming from external data sources. The visualisation and query front-end enables the 3D navigation of the models in a virtual environment, as well as the interaction with the objects by means of queries based on attributes or on geometries. The tool can be used as a standalone application, or served through the web. The characteristics of the research work, along with some implementation issues and the developed QueryArch3D tool will be discussed and presented.


Author(s):  
D. Kitsakis ◽  
E. Tsiliakou ◽  
T. Labropoulos ◽  
E. Dimopoulou

Over the last decades 3D modelling has been a fast growing field in Geographic Information Science, extensively applied in various domains including reconstruction and visualization of cultural heritage, especially monuments and traditional settlements. Technological advances in computer graphics, allow for modelling of complex 3D objects achieving high precision and accuracy. Procedural modelling is an effective tool and a relatively novel method, based on algorithmic modelling concept. It is utilized for the generation of accurate 3D models and composite facade textures from sets of rules which are called Computer Generated Architecture grammars (CGA grammars), defining the objects’ detailed geometry, rather than altering or editing the model manually. In this paper, procedural modelling tools have been exploited to generate the 3D model of a traditional settlement in the region of Central Zagori in Greece. The detailed geometries of 3D models derived from the application of shape grammars on selected footprints, and the process resulted in a final 3D model, optimally describing the built environment of Central Zagori, in three levels of Detail (LoD). The final 3D scene was exported and published as 3D web-scene which can be viewed with 3D CityEngine viewer, giving a walkthrough the whole model, same as in virtual reality or game environments. This research work addresses issues regarding textures' precision, LoD for 3D objects and interactive visualization within one 3D scene, as well as the effectiveness of large scale modelling, along with the benefits and drawbacks that derive from procedural modelling techniques in the field of cultural heritage and more specifically on 3D modelling of traditional settlements.


Author(s):  
A. Adami ◽  
S. Chiarini ◽  
S. Cremonesi ◽  
L. Fregonese ◽  
L. Taffurelli ◽  
...  

In recent years many earthquakes hit Italy and its Cultural Heritage. The topic of survey of buildings damaged by seismic events and their interpretation has become very relevant and involved many research groups and Italian Civil Protection. &lt;br&gt;&lt;br&gt; The damage survey has different roles: in the first stage, immediately after the emergency, the documentation is necessary for the shoring and protection of damaged structures (AEDES forms of Civil Protection). The aim of the second stage is the study and the documentation for the restoration, reconstruction and retrofitting of buildings. &lt;br&gt;&lt;br&gt; In this context, this study presents methods and instruments used in the survey of 24 churches in the province of Mantua, Lombardy, after the 2012 earthquake sequence. The paper examines the difficulties in surveying damaged buildings and presents the classification used to define, time by time, the most suitable survey approach in the field of Geomatics. In this classification, many aspects are taken into account, such as logistical and practical problems, safety conditions, time preserving methods, economic decisions, complexity of building and required results. &lt;br&gt;&lt;br&gt; The accurate documentation obtained as a three-dimensional architectural database allows for the observation and analysis of the damage, the definition of interpretative models and the development of intervention projects. Different results are obtained from the point cloud database: traditional 2D representations for architectural projects as well as 3D models for structural analysis or for the development of BIM.


Author(s):  
B. G. Marino ◽  
A. Masiero ◽  
F. Chiabrando ◽  
A. M. Lingua ◽  
F. Fissore ◽  
...  

<p><strong>Abstract.</strong> Thanks to the recent worldwide spread of drones and to the development of structure from motion photogrammetric software, UAV photogrammetry is becoming a convenient and reliable way for the 3D documentation of built heritage. Hence, nowadays, UAV photogrammetric surveying is a common and quite standard tool for producing 3D models of relatively large areas. However, when such areas are large, then a significant part of the generated point cloud is often of minor interest. Given the necessity of efficiently dealing with storing, processing and analyzing the produced point cloud, some optimization step should be considered in order to reduce the amount of redundancy, in particular in the parts of the model that are of minor interest. Despite this can be done by means of a manual selection of such parts, an automatic selection is clearly much more viable way to speed up the final model generation. Motivated by the recent development of many semantic classification techniques, the aim of this work is investigating the use of point cloud optimization based on semantic recognition of different components in the photogrammetric 3D model. The Girifalco Fortress (Cortona, Italy) is used as case study for such investigation. The rationale of the proposed methodology is clearly that of preserving high point density in the model in the areas that describe the fortress, whereas point cloud density is dramatically reduced in vegetated and soil areas. Thanks to the implemented automatic procedure, in the considered case study, the size of the point cloud has been reduced by a factor five, approximately. It is worth to notice that such result has been obtained preserving the original point density on the fortress surfaces, hence ensuring the same capabilities of geometric analysis of the original photogrammetric model.</p>


Author(s):  
P. Rodríguez-Gonzálvez ◽  
S. Cardozo Mamani ◽  
A. Guerra Campo ◽  
L. J. Sánchez-Aparicio ◽  
S. del Pozo ◽  
...  

The integration of the fourth dimension into the geospatial data allows to generate a diachronic model of Cultural Heritage (CH) assets, namely, a set of 3D models to represent it in various historical phases. This kind of reconstruction pursues a better understanding of the CH site/scenario, enriching the historical hypotheses as well as contributing to the conservation and decisionmaking process. Although the new geotechnologies have reduced the amount of fieldwork, the generation of 4D model implies the interpretation of heterogeneous historical information sources and their integration. However, this situation could reach a critical point when the study elements are no longer present. Their reconstruction will allow the digital preservation and maintenance of our culture. The main challenge is to harmonize the different historical and archaeological data sources available in relation with the current remains, to recover the lost CH assets with a high degree of reliability. This manuscript aims to examine the study case of a diachronic reconstruction by means of the use of the geotechnology Mobile Laser System (MLS) and reverse engineering techniques for a lost urban CH element, the citadel or <i>Alcázar</i> Gate of Ávila. Within this aim, the derived product is evaluated in terms of the achieved accuracy to assess its suitability on the basis of constructive interpretations required to integrate the historical sources in relation to current remains and the surrounding.


Author(s):  
A. Adami ◽  
S. Chiarini ◽  
S. Cremonesi ◽  
L. Fregonese ◽  
L. Taffurelli ◽  
...  

In recent years many earthquakes hit Italy and its Cultural Heritage. The topic of survey of buildings damaged by seismic events and their interpretation has become very relevant and involved many research groups and Italian Civil Protection. <br><br> The damage survey has different roles: in the first stage, immediately after the emergency, the documentation is necessary for the shoring and protection of damaged structures (AEDES forms of Civil Protection). The aim of the second stage is the study and the documentation for the restoration, reconstruction and retrofitting of buildings. <br><br> In this context, this study presents methods and instruments used in the survey of 24 churches in the province of Mantua, Lombardy, after the 2012 earthquake sequence. The paper examines the difficulties in surveying damaged buildings and presents the classification used to define, time by time, the most suitable survey approach in the field of Geomatics. In this classification, many aspects are taken into account, such as logistical and practical problems, safety conditions, time preserving methods, economic decisions, complexity of building and required results. <br><br> The accurate documentation obtained as a three-dimensional architectural database allows for the observation and analysis of the damage, the definition of interpretative models and the development of intervention projects. Different results are obtained from the point cloud database: traditional 2D representations for architectural projects as well as 3D models for structural analysis or for the development of BIM.


Author(s):  
C. Gottardi ◽  
F. Guerra

The work presented here focuses on the analysis of the potential of spherical images acquired with specific cameras for documentation and three-dimensional reconstruction of Cultural Heritage. Nowadays, thanks to the introduction of cameras able to generate panoramic images automatically, without the requirement of a stitching software to join together different photos, spherical images allow the documentation of spaces in an extremely fast and efficient way.<br> In this particular case, the Nikon Key Mission 360 spherical camera was tested on the Tolentini’s cloister, which used to be part of the convent of the close church and now location of the Iuav University of Venice. The aim of the research is based on testing the acquisition of spherical images with the KM360 and comparing the obtained photogrammetric models with data acquired from a laser scanning survey in order to test the metric accuracy and the level of detail achievable with this particular camera.<br> This work is part of a wider research project that the Photogrammetry Laboratory of the Iuav University of Venice has been dealing with in the last few months; the final aim of this research project will be not only the comparison between 3D models obtained from spherical images and laser scanning survey’s techniques, but also the examination of their reliability and accuracy with respect to the previous methods of generating spherical panoramas. At the end of the research work, we would like to obtain an operational procedure for spherical cameras applied to metric survey and documentation of Cultural Heritage.


2019 ◽  
Vol 8 (2) ◽  
pp. 61 ◽  
Author(s):  
Pablo Rodríguez-Gonzálvez ◽  
Ángel Guerra Campo ◽  
Ángel Muñoz-Nieto ◽  
Luis Sánchez-Aparicio ◽  
Diego González-Aguilera

Cultural heritage (CH) documentation is essential for the study and promotion of CH assets/sites, and provides a way of transmitting knowledge about heritage to future generations. The integration of the fourth dimension into geospatial datasets enables generating a diachronic model of CH elements, namely, a set of three-dimensional (3D) models to represent their evolution in various historical phases. The enhanced four-dimensional (4D) modeling (3D plus time) pursues a better understanding of the CH scenario, enriching historical hypotheses as well as contributing to the conservation and decision-making process. Although new geomatic techniques have reduced the amount of fieldwork, when put together, the geometric and temporal dimensions imply the interpretation of heterogeneous historical information sources and their integration. However, this situation could reach a critical point when the study elements are no longer present. The main challenge is to harmonize the different historical and archaeological data sources that are available with the current remains in order to graphically rebuild and model the lost CH assets with a high degree of reliability. Moreover, 4D web visualization is a great way to disclose the CH information and cultural identity. Additionally, it will serve as a basis to perform simulations of possible future risks or changes that can happen during planned or hypothetical restoration processes. This paper aims to examine the study case of a diachronic reconstruction by means of a mobile laser system (MLS) and reverse modeling techniques for a lost urban CH element: the citadel or Alcázar gate of Ávila. Within this aim, the final model is evaluated in terms of the consistency of the historical sources to assess its suitability considering the constructive interpretations that are required to integrate heterogenous data sources. Moreover, geometric modeling is evaluated regarding the current remains and its surroundings. Finally, a web 4D viewer is presented for its dissemination and publicity. This paper is an extended and improved version of our paper that was published in the 2018 ISPRS Technical Commission II Symposium, Riva del Garda, Italy, 3–7 June 2018.


2020 ◽  
Vol 10 (2) ◽  
pp. 158-168
Author(s):  
SVETLANA IVANOVA ◽  

The purpose of the research work is to analyze the norms of Federal laws, as well as the laws of the Russian Federation's constituent entities, devoted to the definitions and classification of the concepts “cultural heritage”, “historical and cultural monuments”, “cultural values”. Conclusions obtained in the course of the research: based on the study of current legislation, it is concluded that the definitions of “cultural values”, “cultural property”, “objects of cultural inheritance” contained in various normative legal acts differ in content. Based on the research, the author proposes the concept of “cultural values”.


Sign in / Sign up

Export Citation Format

Share Document