scholarly journals ASSESSMENTS OF SENTINEL-2 VEGETATION RED-EDGE SPECTRAL BANDS FOR IMPROVING LAND COVER CLASSIFICATION

Author(s):  
S. Qiu ◽  
B. He ◽  
C. Yin ◽  
Z. Liao

The Multi Spectral Instrument (MSI) onboard Sentinel-2 can record the information in Vegetation Red-Edge (VRE) spectral domains. In this study, the performance of the VRE bands on improving land cover classification was evaluated based on a Sentinel-2A MSI image in East Texas, USA. Two classification scenarios were designed by excluding and including the VRE bands. A Random Forest (RF) classifier was used to generate land cover maps and evaluate the contributions of different spectral bands. The combination of VRE bands increased the overall classification accuracy by 1.40 %, which was statistically significant. Both confusion matrices and land cover maps indicated that the most beneficial increase was from vegetation-related land cover types, especially agriculture. Comparison of the relative importance of each band showed that the most beneficial VRE bands were Band 5 and Band 6. These results demonstrated the value of VRE bands for land cover classification.

2021 ◽  
Vol 13 (18) ◽  
pp. 3559
Author(s):  
Daniel Alexander Rudd ◽  
Mojtaba Karami ◽  
Rasmus Fensholt

Mapping of the Arctic region is increasingly important in light of global warming as land cover maps can provide the foundation for upscaling of ecosystem properties and processes. To this end, satellite images provide an invaluable source of Earth observations to monitor land cover in areas that are otherwise difficult to access. With the continuous development of new satellites, it is important to optimize the existing maps for further monitoring of Arctic ecosystems. This study presents a scalable classification framework, producing novel 10 m resolution land cover maps for Kobbefjord, Disko, and Zackenberg in Greenland. Based on Sentinel-2, a digital elevation model, and Google Earth Engine (GEE), this framework classifies the areas into nine classes. A vegetation land cover classification for 2019 is achieved through a multi-temporal analysis based on 41 layers comprising phenology, spectral indices, and topographical features. Reference data (1164 field observations) were used to train a random forest classifier, achieving a cross-validation accuracy of 91.8%. The red-edge bands of Sentinel-2 data proved to be particularly well suited for mapping the fen vegetation class. The study presents land cover mapping in the three study areas with an unprecedented spatial resolution and can be extended via GEE for further ecological monitoring in Greenland.


2021 ◽  
Vol 13 (12) ◽  
pp. 2301
Author(s):  
Zander Venter ◽  
Markus Sydenham

Land cover maps are important tools for quantifying the human footprint on the environment and facilitate reporting and accounting to international agreements addressing the Sustainable Development Goals. Widely used European land cover maps such as CORINE (Coordination of Information on the Environment) are produced at medium spatial resolutions (100 m) and rely on diverse data with complex workflows requiring significant institutional capacity. We present a 10 m resolution land cover map (ELC10) of Europe based on a satellite-driven machine learning workflow that is annually updatable. A random forest classification model was trained on 70K ground-truth points from the LUCAS (Land Use/Cover Area Frame Survey) dataset. Within the Google Earth Engine cloud computing environment, the ELC10 map can be generated from approx. 700 TB of Sentinel imagery within approx. 4 days from a single research user account. The map achieved an overall accuracy of 90% across eight land cover classes and could account for statistical unit land cover proportions within 3.9% (R2 = 0.83) of the actual value. These accuracies are higher than that of CORINE (100 m) and other 10 m land cover maps including S2GLC and FROM-GLC10. Spectro-temporal metrics that capture the phenology of land cover classes were most important in producing high mapping accuracies. We found that the atmospheric correction of Sentinel-2 and the speckle filtering of Sentinel-1 imagery had a minimal effect on enhancing the classification accuracy (< 1%). However, combining optical and radar imagery increased accuracy by 3% compared to Sentinel-2 alone and by 10% compared to Sentinel-1 alone. The addition of auxiliary data (terrain, climate and night-time lights) increased accuracy by an additional 2%. By using the centroid pixels from the LUCAS Copernicus module polygons we increased accuracy by <1%, revealing that random forests are robust against contaminated training data. Furthermore, the model requires very little training data to achieve moderate accuracies—the difference between 5K and 50K LUCAS points is only 3% (86 vs. 89%). This implies that significantly less resources are necessary for making in situ survey data (such as LUCAS) suitable for satellite-based land cover classification. At 10 m resolution, the ELC10 map can distinguish detailed landscape features like hedgerows and gardens, and therefore holds potential for aerial statistics at the city borough level and monitoring property-level environmental interventions (e.g., tree planting). Due to the reliance on purely satellite-based input data, the ELC10 map can be continuously updated independent of any country-specific geographic datasets.


2021 ◽  
Vol 13 (21) ◽  
pp. 4483
Author(s):  
W. Gareth Rees ◽  
Jack Tomaney ◽  
Olga Tutubalina ◽  
Vasily Zharko ◽  
Sergey Bartalev

Growing stock volume (GSV) is a fundamental parameter of forests, closely related to the above-ground biomass and hence to carbon storage. Estimation of GSV at regional to global scales depends on the use of satellite remote sensing data, although accuracies are generally lower over the sparse boreal forest. This is especially true of boreal forest in Russia, for which knowledge of GSV is currently poor despite its global importance. Here we develop a new empirical method in which the primary remote sensing data source is a single summer Sentinel-2 MSI image, augmented by land-cover classification based on the same MSI image trained using MODIS-derived data. In our work the method is calibrated and validated using an extensive set of field measurements from two contrasting regions of the Russian arctic. Results show that GSV can be estimated with an RMS uncertainty of approximately 35–55%, comparable to other spaceborne estimates of low-GSV forest areas, with 70% spatial correspondence between our GSV maps and existing products derived from MODIS data. Our empirical approach requires somewhat laborious data collection when used for upscaling from field data, but could also be used to downscale global data.


2021 ◽  
Vol 18 (9) ◽  
pp. 2388-2401
Author(s):  
Arif Ur Rehman ◽  
Sami Ullah ◽  
Muhammad Shafique ◽  
Muhammad Sadiq Khan ◽  
Muhammad Tariq Badshah ◽  
...  

Author(s):  
H. Courteille ◽  
A. Benoit ◽  
N. Meger ◽  
A. Atto ◽  
D. Ienco

2020 ◽  
Vol 12 (15) ◽  
pp. 2411 ◽  
Author(s):  
Thanh Noi Phan ◽  
Verena Kuch ◽  
Lukas W. Lehnert

Land cover information plays a vital role in many aspects of life, from scientific and economic to political. Accurate information about land cover affects the accuracy of all subsequent applications, therefore accurate and timely land cover information is in high demand. In land cover classification studies over the past decade, higher accuracies were produced when using time series satellite images than when using single date images. Recently, the availability of the Google Earth Engine (GEE), a cloud-based computing platform, has gained the attention of remote sensing based applications where temporal aggregation methods derived from time series images are widely applied (i.e., the use the metrics such as mean or median), instead of time series images. In GEE, many studies simply select as many images as possible to fill gaps without concerning how different year/season images might affect the classification accuracy. This study aims to analyze the effect of different composition methods, as well as different input images, on the classification results. We use Landsat 8 surface reflectance (L8sr) data with eight different combination strategies to produce and evaluate land cover maps for a study area in Mongolia. We implemented the experiment on the GEE platform with a widely applied algorithm, the Random Forest (RF) classifier. Our results show that all the eight datasets produced moderately to highly accurate land cover maps, with overall accuracy over 84.31%. Among the eight datasets, two time series datasets of summer scenes (images from 1 June to 30 September) produced the highest accuracy (89.80% and 89.70%), followed by the median composite of the same input images (88.74%). The difference between these three classifications was not significant based on the McNemar test (p > 0.05). However, significant difference (p < 0.05) was observed for all other pairs involving one of these three datasets. The results indicate that temporal aggregation (e.g., median) is a promising method, which not only significantly reduces data volume (resulting in an easier and faster analysis) but also produces an equally high accuracy as time series data. The spatial consistency among the classification results was relatively low compared to the general high accuracy, showing that the selection of the dataset used in any classification on GEE is an important and crucial step, because the input images for the composition play an essential role in land cover classification, particularly with snowy, cloudy and expansive areas like Mongolia.


2019 ◽  
Vol 11 (23) ◽  
pp. 2807 ◽  
Author(s):  
Arthur Bayle ◽  
Bradley Carlson ◽  
Vincent Thierion ◽  
Marc Isenmann ◽  
Philippe Choler

Shrub encroachment into grassland and rocky habitats is a noticeable land cover change currently underway in temperate mountains and is a matter of concern for the sustainable management of mountain biodiversity. Current land cover products tend to underestimate the extent of mountain shrublands dominated by Ericaceae (Vaccinium spp. (species) and Rhododendron ferrugineum). In addition, mountain shrubs are often confounded with grasslands. Here, we examined the potential of anthocyanin-responsive vegetation indices to provide more accurate maps of mountain shrublands in a mountain range located in the French Alps. We relied on the multi-spectral instrument onboard the Sentinel-2A and 2B satellites and the availability of red-edge bands to calculate a Normalized Anthocyanin Reflectance Index (NARI). We used this index to quantify the autumn accumulation of anthocyanin in canopies dominated by Vaccinium spp. and Rhododendron ferrugineum and compared the effectiveness of NARI to Normalized Difference Vegetation Index (NDVI) as a basis for shrubland mapping. Photointerpretation of high-resolution aerial imagery, intensive field campaigns, and floristic surveys provided complementary data to calibrate and evaluate model performance. The proposed NARI-based model performed better than the NDVI-based model with an area under the curve (AUC) of 0.92 against 0.58. Validation of shrub cover maps based on NARI resulted in a Kappa coefficient of 0.67, which outperformed existing land cover products and resulted in a ten-fold increase in estimated area occupied by Ericaceae-dominated shrublands. We conclude that the Sentinel-2 red-edge band provides novel opportunities to detect seasonal anthocyanin accumulation in plant canopies and discuss the potential of our method to quantify long-term dynamics of shrublands in alpine and arctic contexts.


Sign in / Sign up

Export Citation Format

Share Document