scholarly journals 3D CITY MODELLING OF ISTANBUL BASED ON LIDAR DATA AND PANORAMIC IMAGES – ISSUES AND CHALLENGES

Author(s):  
G. Buyuksalih ◽  
P. Baskaraca ◽  
S. Bayburt ◽  
I. Buyuksalih ◽  
A. Abdul Rahman

<p><strong>Abstract.</strong> This paper describes the generation of 3D city modelling of LoD2 and LoD3 buildings based on 3D point clouds data and other auxiliary data for Istanbul city, Turkey. The project is being undertaken by Istanbul Greater Municipality (IBB) since October 2012. The aim is to provide 3D information to the relevant city planning departments within IBB. The development of the 3D city model utilized several data acquisition techniques, software and computing tools as part of the methodology. The tools include from Riegl, TerraSolid, TerraScan, FME Workbench, MicroStation, and other visualization tools. The generated 3D city models illustrate how the high-resolution point clouds and 3D modelling play major role in such development. This paper also highlights several issues and challenges of the development, i.e. from data acquisition, processing of point clouds and the 3D modelling of buildings.</p>

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 201
Author(s):  
Michael Bekele Maru ◽  
Donghwan Lee ◽  
Kassahun Demissie Tola ◽  
Seunghee Park

Modeling a structure in the virtual world using three-dimensional (3D) information enhances our understanding, while also aiding in the visualization, of how a structure reacts to any disturbance. Generally, 3D point clouds are used for determining structural behavioral changes. Light detection and ranging (LiDAR) is one of the crucial ways by which a 3D point cloud dataset can be generated. Additionally, 3D cameras are commonly used to develop a point cloud containing many points on the external surface of an object around it. The main objective of this study was to compare the performance of optical sensors, namely a depth camera (DC) and terrestrial laser scanner (TLS) in estimating structural deflection. We also utilized bilateral filtering techniques, which are commonly used in image processing, on the point cloud data for enhancing their accuracy and increasing the application prospects of these sensors in structure health monitoring. The results from these sensors were validated by comparing them with the outputs from a linear variable differential transformer sensor, which was mounted on the beam during an indoor experiment. The results showed that the datasets obtained from both the sensors were acceptable for nominal deflections of 3 mm and above because the error range was less than ±10%. However, the result obtained from the TLS were better than those obtained from the DC.


Author(s):  
I. Buyuksalih ◽  
S. Bayburt ◽  
G. Buyuksalih ◽  
A. P. Baskaraca ◽  
H. Karim ◽  
...  

3D City modelling is increasingly popular and becoming valuable tools in managing big cities. Urban and energy planning, landscape, noise-sewage modelling, underground mapping and navigation are among the applications/fields which really depend on 3D modelling for their effectiveness operations. Several research areas and implementation projects had been carried out to provide the most reliable 3D data format for sharing and functionalities as well as visualization platform and analysis. For instance, BIMTAS company has recently completed a project to estimate potential solar energy on 3D buildings for the whole Istanbul and now focussing on 3D utility underground mapping for a pilot case study. The research and implementation standard on 3D City Model domain (3D data sharing and visualization schema) is based on CityGML schema version 2.0. However, there are some limitations and issues in implementation phase for large dataset. Most of the limitations were due to the visualization, database integration and analysis platform (Unity3D game engine) as highlighted in this paper.


Author(s):  
T. Guo ◽  
A. Capra ◽  
M. Troyer ◽  
A. Gruen ◽  
A. J. Brooks ◽  
...  

Recent advances in automation of photogrammetric 3D modelling software packages have stimulated interest in reconstructing highly accurate 3D object geometry in unconventional environments such as underwater utilizing simple and low-cost camera systems. The accuracy of underwater 3D modelling is affected by more parameters than in single media cases. This study is part of a larger project on 3D measurements of temporal change of coral cover in tropical waters. It compares the accuracies of 3D point clouds generated by using images acquired from a system camera mounted in an underwater housing and the popular GoPro cameras respectively. A precisely measured calibration frame was placed in the target scene in order to provide accurate control information and also quantify the errors of the modelling procedure. In addition, several objects (cinder blocks) with various shapes were arranged in the air and underwater and 3D point clouds were generated by automated image matching. These were further used to examine the relative accuracy of the point cloud generation by comparing the point clouds of the individual objects with the objects measured by the system camera in air (the best possible values). Given a working distance of about 1.5 m, the GoPro camera can achieve a relative accuracy of 1.3 mm in air and 2.0 mm in water. The system camera achieved an accuracy of 1.8 mm in water, which meets our requirements for coral measurement in this system.


Author(s):  
N. Bruno ◽  
R. Roncella

<p><strong>Abstract.</strong> Google Street View is a technology implemented in several Google services/applications (e.g. Google Maps, Google Earth) which provides the user, interested in viewing a particular location on the map, with panoramic images (represented in equi-rectangular projection) at street level. Generally, consecutive panoramas are acquired with an average distance of 5&amp;ndash;10<span class="thinspace"></span>m and can be compared to a traditional photogrammetric strip and, thus, processed to reconstruct portion of city at nearly zero cost. Most of the photogrammetric software packages available today implement spherical camera models and can directly process images in equi-rectangular projection. Although many authors provided in the past relevant works that involved the use of Google Street View imagery, mainly for 3D city model reconstruction, very few references can be found about the actual accuracy that can be obtained with such data. The goal of the present work is to present preliminary tests (at time of writing just three case studies has been analysed) about the accuracy and reliability of the 3D models obtained from Google Street View panoramas.</p>


Author(s):  
A. Georgopoulos ◽  
C. Oikonomou ◽  
E. Adamopoulos ◽  
E. K. Stathopoulou

When it comes to large scale mapping of limited areas especially for cultural heritage sites, things become critical. Optical and non-optical sensors are developed to such sizes and weights that can be lifted by such platforms, like e.g. LiDAR units. At the same time there is an increase in emphasis on solutions that enable users to get access to 3D information faster and cheaper. Considering the multitude of platforms, cameras and the advancement of algorithms in conjunction with the increase of available computing power this challenge should and indeed is further investigated. In this paper a short review of the UAS technologies today is attempted. A discussion follows as to their applicability and advantages, depending on their specifications, which vary immensely. The on-board cameras available are also compared and evaluated for large scale mapping. Furthermore a thorough analysis, review and experimentation with different software implementations of Structure from Motion and Multiple View Stereo algorithms, able to process such dense and mostly unordered sequence of digital images is also conducted and presented. As test data set, we use a rich optical and thermal data set from both fixed wing and multi-rotor platforms over an archaeological excavation with adverse height variations and using different cameras. Dense 3D point clouds, digital terrain models and orthophotos have been produced and evaluated for their radiometric as well as metric qualities.


Author(s):  
L. Díaz-Vilariño ◽  
P. Boguslawski ◽  
K. Khoshelham ◽  
H. Lorenzo ◽  
L. Mahdjoubi

In the recent years, indoor modelling and navigation has become a research of interest because many stakeholders require navigation assistance in various application scenarios. The navigational assistance for blind or wheelchair people, building crisis management such as fire protection, augmented reality for gaming, tourism or training emergency assistance units are just some of the direct applications of indoor modelling and navigation. &lt;br&gt;&lt;br&gt; Navigational information is traditionally extracted from 2D drawings or layouts. Real state of indoors, including opening position and geometry for both windows and doors, and the presence of obstacles is commonly ignored. &lt;br&gt;&lt;br&gt; In this work, a real indoor-path planning methodology based on 3D point clouds is developed. The value and originality of the approach consist on considering point clouds not only for reconstructing semantically-rich 3D indoor models, but also for detecting potential obstacles in the route planning and using these for readapting the routes according to the real state of the indoor depictured by the laser scanner.


Author(s):  
K. Kumar ◽  
A. Labetski ◽  
H. Ledoux ◽  
J. Stoter

<p><strong>Abstract.</strong> The Level of Detail (LOD) concept in CityGML 2.0 is meant to differentiate the multiple representations of semantic 3D city models. Despite the popularity and general acceptance of the concept by the practitioners and stakeholders in 3D city modelling, there are still some limitations. While the CityGML LOD concept is well defined for buildings, bridges, tunnels, and to some extent for roads, there is no clear definition of LODs for terrain/relief, vegetation, land use, water bodies, and generic city objects in CityGML. In addition, extensive research has been done to refine the LOD concept of CityGML for buildings but little is known on requirements and possibilities to model city object types as terrain at different LODs. To address this gap, we focus in this paper on the terrain of a 3D city model and propose a framework for modelling terrains at different LODs in CityGML. As a proof of concept of our framework, we implemented a software prototype to generate terrain models with other city features integrated (e.g. buildings) at different LODs in CityGML.</p>


Author(s):  
L. Díaz-Vilariño ◽  
P. Boguslawski ◽  
K. Khoshelham ◽  
H. Lorenzo ◽  
L. Mahdjoubi

In the recent years, indoor modelling and navigation has become a research of interest because many stakeholders require navigation assistance in various application scenarios. The navigational assistance for blind or wheelchair people, building crisis management such as fire protection, augmented reality for gaming, tourism or training emergency assistance units are just some of the direct applications of indoor modelling and navigation. <br><br> Navigational information is traditionally extracted from 2D drawings or layouts. Real state of indoors, including opening position and geometry for both windows and doors, and the presence of obstacles is commonly ignored. <br><br> In this work, a real indoor-path planning methodology based on 3D point clouds is developed. The value and originality of the approach consist on considering point clouds not only for reconstructing semantically-rich 3D indoor models, but also for detecting potential obstacles in the route planning and using these for readapting the routes according to the real state of the indoor depictured by the laser scanner.


Author(s):  
S. Artese

The paper describes the implementation of the 3D city model of the pedestrian area of Cosenza, which in recent years has become the Bilotti Open Air Museum (MAB). For this purpose were used both the data available (regional technical map, city maps, orthophotos) and acquired through several surveys of buildings and "Corso Mazzini" street (photos, topographic measurements, laser scanner point clouds). In addition to the urban scale model, the survey of the statues of the MAB was carried out. By means of data processing, the models of the same statues have been created, that can be used as objects within the city model. <br><br> The 3D model of the MAB open air museum has been used to implement a Web-GIS allowing the citizen's participation, understanding and suggestions. The 3D city model is intended as a new tool for urban planning, therefore it has been used both for representing the current situation of the MAB and for design purposes, by acknowledging suggestions regarding a possible different location of the statues and a new way to enjoy the museum.


Author(s):  
I.-C. Lee ◽  
F. Tsai

A series of panoramic images are usually used to generate a 720° panorama image. Although panoramic images are typically used for establishing tour guiding systems, in this research, we demonstrate the potential of using panoramic images acquired from multiple sites to create not only 720° panorama, but also three-dimensional (3D) point clouds and 3D indoor models. Since 3D modeling is one of the goals of this research, the location of the panoramic sites needed to be carefully planned in order to maintain a robust result for close-range photogrammetry. After the images are acquired, panoramic images are processed into 720° panoramas, and these panoramas which can be used directly as panorama guiding systems or other applications. <br><br> In addition to these straightforward applications, interior orientation parameters can also be estimated while generating 720° panorama. These parameters are focal length, principle point, and lens radial distortion. The panoramic images can then be processed with closerange photogrammetry procedures to extract the exterior orientation parameters and generate 3D point clouds. In this research, VisaulSFM, a structure from motion software is used to estimate the exterior orientation, and CMVS toolkit is used to generate 3D point clouds. Next, the 3D point clouds are used as references to create building interior models. In this research, Trimble Sketchup was used to build the model, and the 3D point cloud was added to the determining of locations of building objects using plane finding procedure. In the texturing process, the panorama images are used as the data source for creating model textures. This 3D indoor model was used as an Augmented Reality model replacing a guide map or a floor plan commonly used in an on-line touring guide system. <br><br> The 3D indoor model generating procedure has been utilized in two research projects: a cultural heritage site at Kinmen, and Taipei Main Station pedestrian zone guidance and navigation system. The results presented in this paper demonstrate the potential of using panoramic images to generate 3D point clouds and 3D models. However, it is currently a manual and labor-intensive process. A research is being carried out to Increase the degree of automation of these procedures.


Sign in / Sign up

Export Citation Format

Share Document