scholarly journals PEDESTRIAN DEAD RECKONING USING SMARTPHONES SENSORS: AN EFFICIENT INDOOR POSITIONING SYSTEM IN COMPLEX BUILDINGS OF SMART CITIES

Author(s):  
E. Saadatzadeh ◽  
A. Chehreghan ◽  
R. Ali Abbaspour

Abstract. This paper proposes an indoor positioning method using Pedestrian Dead Reckoning (PDR) based on the detection of the mode of the user’s smartphone. In the first step, to determine the mode of carrying the smartphone (Holding, Calling, Swinging) by suitably formed feature vectors based on sensor data, three classification algorithms (Decision Tree (DT), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN)) are evaluated. From the classification algorithm perspective, the decision tree algorithm had the best performance in terms of processing time and classification. Secondly, to determine the user position, the step detection is performed by defining the upper threshold and time threshold for Acceleration norm values. The orientation component is obtained by combining accelerometer, magnetometer, and gyroscope data using Complementary Filtering and Principal Component Analysis based on Global Acceleration (PCA-GA) methods. The mean standard deviation along the direct path for the three modes of carrying (Holding, Calling, and Swinging) were obtained 6.22, 6.82, and 14.68 degrees, respectively. Localization experiments were performed on 3 modes of carrying a smartphone in a rectangular geometry path. The mean final error of positioning from ordinary walking for the three modes of holding (Calling, Holding, Swinging) were obtained 2.11, 2.34, and 4.5 m, respectively.

Author(s):  
E. Gulo ◽  
G. Sohn ◽  
A. Afnan

<p><strong>Abstract.</strong> With the increasing number and usage of mobile devices in people’s daily life, indoor positioning has attracted a lot attention from both academia and industry for the purpose of providing location-aware services. This work proposes an indoor positioning system, primarily based on WLAN fingerprint matching, that includes various minor improvements to improve the positioning accuracy of the algorithm, as well as improve the quality and reduce the collection time of the reference fingerprints. In addition, a novel Path Evaluation and Retroactive Adjustment module is employed; it intends to improve the positioning accuracy of the system in a similar fashion to a Pedestrian Dead Reckoning implemented along with WLAN Fingerprint Matching in a Sensor Fusion system. The benefit of this approach being that it avoids the requirement of inertial sensor data, as well as its intensive computation and power use, while providing a similar accuracy improvement to Pedestrian Dead Reckoning. Our experimental results demonstrate that this may be a viable approach for positioning using mobile devices in an indoor environment.</p>


Geomatics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 148-176
Author(s):  
Maan Khedr ◽  
Naser El-Sheimy

Mobile location-based services (MLBS) are attracting attention for their potential public and personal use for a variety of applications such as location-based advertisement, smart shopping, smart cities, health applications, emergency response, and even gaming. Many of these applications rely on Inertial Navigation Systems (INS) due to the degraded GNSS services indoors. INS-based MLBS using smartphones is hindered by the quality of the MEMS sensors provided in smartphones which suffer from high noise and errors resulting in high drift in the navigation solution rapidly. Pedestrian dead reckoning (PDR) is an INS-based navigation technique that exploits human motion to reduce navigation solution errors, but the errors cannot be eliminated without aid from other techniques. The purpose of this study is to enhance and extend the short-term reliability of PDR systems for smartphones as a standalone system through an enhanced step detection algorithm, a periodic attitude correction technique, and a novel PCA-based motion direction estimation technique. Testing shows that the developed system (S-PDR) provides a reliable short-term navigation solution with a final positioning error that is up to 6 m after 3 min runtime. These results were compared to a PDR solution using an Xsens IMU which is known to be a high grade MEMS IMU and was found to be worse than S-PDR. The findings show that S-PDR can be used to aid GNSS in challenging environments and can be a viable option for short-term indoor navigation until aiding is provided by alternative means. Furthermore, the extended reliable solution of S-PDR can help reduce the operational complexity of aiding navigation systems such as RF-based indoor navigation and magnetic map matching as it reduces the frequency by which these aiding techniques are required and applied.


2020 ◽  
Vol 8 (5) ◽  
pp. 2522-2527

In this paper, we design method for recognition of fingerprint and IRIS using feature level fusion and decision level fusion in Children multimodal biometric system. Initially, Histogram of Gradients (HOG), Gabour and Maximum filter response are extracted from both the domains of fingerprint and IRIS and considered for identification accuracy. The combination of feature vector of all the possible features is recommended by biometrics traits of fusion. For fusion vector the Principal Component Analysis (PCA) is used to select features. The reduced features are fed into fusion classifier of K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Navie Bayes(NB). For children multimodal biometric system the suitable combination of features and fusion classifiers is identified. The experimentation conducted on children’s fingerprint and IRIS database and results reveal that fusion combination outperforms individual. In addition the proposed model advances the unimodal biometrics system.


2020 ◽  
Author(s):  
Hoda Heidari ◽  
Zahra Einalou ◽  
Mehrdad Dadgostar ◽  
Hamidreza Hosseinzadeh

Abstract Most of the studies in the field of Brain-Computer Interface (BCI) based on electroencephalography have a wide range of applications. Extracting Steady State Visual Evoked Potential (SSVEP) is regarded as one of the most useful tools in BCI systems. In this study, different methods such as feature extraction with different spectral methods (Shannon entropy, skewness, kurtosis, mean, variance) (bank of filters, narrow-bank IIR filters, and wavelet transform magnitude), feature selection performed by various methods (decision tree, principle component analysis (PCA), t-test, Wilcoxon, Receiver operating characteristic (ROC)), and classification step applying k nearest neighbor (k-NN), perceptron, support vector machines (SVM), Bayesian, multiple layer perceptron (MLP) were compared from the whole stream of signal processing. Through combining such methods, the effective overview of the study indicated the accuracy of classical methods. In addition, the present study relied on a rather new feature selection described by decision tree and PCA, which is used for the BCI-SSVEP systems. Finally, the obtained accuracies were calculated based on the four recorded frequencies representing four directions including right, left, up, and down.


2020 ◽  
Vol 28 (4) ◽  
pp. 224-235
Author(s):  
Irina M Benson ◽  
Beverly K Barnett ◽  
Thomas E Helser

Applications of Fourier transform near infrared (FT-NIR) spectroscopy in fisheries science are currently limited. This current analysis of otolith spectral data demonstrate the potential applicability of FT-NIR spectroscopy to otolith chemistry and spatial variability in fisheries science. The objective of this study was to examine the use of NIR spectroscopy as a tool to differentiate among marine fishes in four large marine ecosystems. We examined otoliths from 13 different species, with three of these species coming from different regions. Principal component analysis described the main directions along which the specimens were separated. The separation of species and their ecosystems may suggest interactions between fish phylogeny, ontogeny, and environmental conditions that can be evaluated using NIR spectroscopy. In order to discriminate spectra across ecosystems and species, four supervised classification model techniques were utilized: soft independent modelling of class analogies, support vector machine discriminant analysis, partial least squares discriminant analysis, and k-nearest neighbor analysis (KNN). This study showed that the best performing model to classify combined ecosystems, all four ecosystems, and species was the KNN model, which had an overall accuracy rate of 99.9%, 97.6%, and 91.5%, respectively. Results from this study suggest that further investigations are needed to determine applications of NIR spectroscopy to otolith chemistry and spatial variability.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5343
Author(s):  
Miroslav Opiela ◽  
František Galčík

Indoor positioning systems for smartphones are often based on Pedestrian Dead Reckoning, which computes the current position from the previously estimated location. Noisy sensor measurements, inaccurate step length estimations, faulty direction detections, and a demand on the real-time calculation introduce the error which is suppressed using a map model and a Bayesian filtering. The main focus of this paper is on grid-based implementations of Bayes filters as an alternative to commonly used Kalman and particle filters. Our previous work regarding grid-based filters is elaborated and enriched with convolution mask calculations. More advanced implementations, the centroid grid filter, and the advanced point-mass filter are introduced. These implementations are analyzed and compared using different configurations on the same raw sensor recordings. The evaluation is performed on three sets of experiments: a custom simple path in faculty building in Slovakia, and on datasets from IPIN competitions from a shopping mall in France, 2018 and a research institute in Italy, 2019. Evaluation results suggests that proposed methods are qualified alternatives to the particle filter. Advantages, drawbacks and proper configurations of these filters are discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document