scholarly journals BIM, STRUCTURAL ANALYSIS AND COMMUNICATION USING COMMON DATA ENVIRONMENT (CDE) IN THE FIELD OF WATER MANAGEMENT

Author(s):  
P. Vlasák ◽  
B. Čerbák

<p><strong>Abstract.</strong> Presentation consists of three parts, which are interconnected:</p><ol><li>BIM application for plants treatment and other complicated structures in the field of water management</li><li>Statics of water management structures in the BIM environment</li><li>Application of Common Data Environment (CDE) for water management</li></ol><p>Two areas – statics and water management technology – are crucial for water management structures. Speaking of statics, we mean the statics of reinforced concrete structures. In our company AQUA PROCON s.r.o. we deal with this area comprehensively, ie. from the initial design in the BIM architectural and construction software, through transferring a load-bearing model to BIM software for 3D reinforcement modelling to evaluating model in static design software. All communication is held in Common Data Environment (CDE). Within this environment, a three-way communication is carried out by the designer, contractor and contracting authority. Part of our performance is also above-standard support for reinforced concrete contractors. We provide models of reinforced concrete structures in LOD 400. The use of Common Data Environment (CDE) does not concern only statics, but also the work of all other professions and project participants. Our activities and workflows are based on the philosophy of OPENBIM and IFC.</p>

The plastic hinge is a key concept of the theory of frames that differentiates this theory from the remaining models for structural analysis. This chapter is exclusively dedicated to define this concept and describe the different models of plastic hinges. It also discusses the differences of implementation between plastic hinges in steel frames (Sections 6.1-6.4) and those in reinforced concrete structures (Sections 6.5-6.6). This chapter is based on the ideas presented in Chapter 5 and it allows formulating the models for elasto-plastic frames that are introduced in the next chapter.


2013 ◽  
Vol 711 ◽  
pp. 623-628 ◽  
Author(s):  
A Ra Ko ◽  
Je Hyuk Lee ◽  
Hyun Suk Jang ◽  
Seung Il Lee ◽  
Young Sang Cho

Structural building information modeling (S-BIM) for reinforced concrete walls based on parametric technique has studied. There are structural analysis and design packages for reinforced concrete structures. 3D BIM platforms which are recently developed and widely adopted in the construction industry are mostly experiencing a difficulty in interoperability with structural analysis and design packages. The modeling of reinforcement placement in the reinforced concrete structures can not be performed using current BIM platforms based on the result of structural analysis and design. This study develops the algorithm and implementation of integrated reinforcement bar placement system by creating a database that stores the results of structural analysis and design so that overall reinforced concrete model including re-bar can be built. Utilization of S-BIM can reduce the time of engineering, the production of working drawing and shop drawing.


2021 ◽  
Author(s):  
Marina Traykova ◽  
Tanya Chardakova

<p>The presented paper analyzes the influence of the choice of floor systems on the sustainability of the whole structure. The paper deals with some of the most popular seismic-resistant structures for buildings – reinforced concrete ductile wall and frame systems. Finding the optimal solution that meets the architectural and structural requirements, while giving a minimal environmental footprint is a challenging task.</p><p>The aim of the paper is to make a comparison of different design solutions, based on their structural analysis, in order to demonstrate the influence of our engineering decisions on the environmental impact.</p>


Author(s):  
Alexander M. Belostotsky ◽  
Nikolay I. Karpenko ◽  
Pavel I. Akimov ◽  
Vladimir N. Sidorov ◽  
Sergey N. Karpenko ◽  
...  

Themodern stage of modelling of behavior of reinforced concrete structures is associated with the widespread use of numerical methods. Thedistinctive paper is devoted todevelopment and numerical implementation of methods of structural analysis including progressive collapse analysis of spatial plate-shell reinforced concrete structures with allowance for physical nonlinearity, crack formation and inducedanisotropy. The relevance of the research topic is substantiated, the current status of research on this topic in Russia and abroad (including various aspects dealing with types of diagrams for modelling of reinforced concrete structures,construction of general deformation models of reinforced concrete, strength criteria for reinforced concrete structures and methods of structural analysis) is analyzed, the goals, objectives and boundaries of the study are determined, the provisions constituting scientific novelty, theoretical significance and practical significance are formulated, publications on the topic are under consideration. It should be noted that generallyfurther improvement and modifications of reinforced concrete models and their integration incontemporarysoftware systems for structural analysis remain very important. It is assumed that developing methods of analysis of reinforced concrete structures will replace multi-iterative approaches to the solution of physically nonlinear problems and move from the practically possible high-precision analysis of individual structures to the analysis of complex structural systems with allowance for various factors of physical nonlinearity and anisotropy. As a result,reliability of design solutions will increase significantly. The strength criteria used in this way, in turn, will also eliminate a number of errors in existing methods for strength analysis.


Author(s):  
O. V. Kovalenko

Hydrotechnical structures of water management and land reclamation complex from the moment of commissioning are subject to aggressive environmental effects: hydrostatic water pressure, alternating freezing and thawing, moistening and drying, corrosive action of salts dissolved in water, dynamic action of ice. The trouble-free operation of structures with long-term aggressive environmental factors is possible only in the case of providing their protection (reinforcement) with effective insulating, anticorrosive, high-strength, wear-resistant and cavitation-resistant composite materials. Waterproofing coatings, which arrange on the surface of reinforced concrete structures, plays an important role in ensuring operational reliability and durability of hydraulic structures. Having rather low cost of waterproofing coatings as compared to the cost of structures the fate of their responsibility in terms of ensuring the durability and operational reliability of the structures is high enough. Waterproofing coatings serve as a barrier to an aggressive environment and thus protect structures from destruction. Notwithstanding the importance of waterproofing protection, this issue is not given due attention today. Therefore, filtration of water through the structures of water-reclamation facilities is a common phenomenon. Water filtration through damaged concrete of hydraulic structures causes dissolution and leaching of water with calcium hydroxide (leaching), which further causes the decomposition of other components of the cement stone and leads to the dilution of the concrete structure and to the strengthening of drip filtration. Drip filtration increases over time, then jet filtration develops, which can lead to complete destruction of the structure. Therefore, providing waterproofing protection of structures is an important engineering task in their construction and operation. One of the determining factors for the effectiveness of waterproofing is the right selection of material. Traditional waterproofing materials on a bituminous basis have insufficient physical-mechanical properties and durability. However, modern technologies of waterproofing protection of concrete and reinforced concrete structures are based on the use of effective composite materials with high physical, mechanical and protective properties. Depending on the type of binder, waterproofing materials can be based on bitumen, bituminous-mineral, bitumen-polymer, coal, polymer compositions, as well as on the basis of cements and polymer cements. The selection of a waterproofing material should be made taking into account the specifics of the operating environment and the conditions of use. The most common in the construction of gluing roll materials on a bituminous basis can only partially satisfy the need for hydraulic engineering, as for the waterproofing of hydraulic structures. There are high requirements with regard to the aggressiveness of the environment and their low repairsability. The most promising for use in the technology of arrangement of waterproofing coatings on concrete and reinforced concrete structures of hydraulic engineering facilities of water management and reclamation complex are polymer cement mixtures, binders in which are Portland cement modified with polymer latex dispersion powder (for two-component). Creation of effective polymer cement waterproofing compositions is based on optimization of the ratio of interpenetrating meshes of polymers and crystal matrix hydrates. Modification of cement systems by polymers allows to increase adhesion and deformation characteristics, fracture resistance and corrosion resistance of polymer cement composites. Depending on the components included in the mixture, waterproofing coatings may be rigid or elastic. Rigid formulations are a water-mixed, dry mixture that includes a vinyl acetate copolymer and designed for waterproofing concrete and reinforced concrete structures with low water filtration. Elastic waterproofing materials are usually two-component. These materials are used for waterproofing structures that are susceptible to deformation, as well as surfaces with a high degree of water filtration and where cracks up to 1 mm are formed. Elastic two-component formulations are dry mixtures with the addition of redispersible polymer powders. They consist of two components: a dry mixture of modified fine cement and aqueous latex polymer, usually acrylic. The content of polymer latex in the mixture has a significant effect on the rheological properties of polymer-cement mixtures and on the physical and mechanical properties of waterproofing coatings made of them. Thus, the introduction of a redispersible polymer powder Axilat L 8262 in a waterproofing mixture in the amount of up to 10% by weight of cement increases the mobility of the mixture from 3,2 to 8,0 cm, increases the adhesive strength of the coating to concrete from 0,45 to 1,95 MPa, increases its bending strength from 6,9 to 7,9 MPa, reduces its water absorption in 24 hours from 7,02% to 0,35% .  


2018 ◽  
Vol 11 (4) ◽  
pp. 834-855
Author(s):  
J. B. SANTOS ◽  
T. J. DA SILVA ◽  
G. M. S. ALVA

Abstract Conventional structural analysis of buildings in reinforced concrete is performed considering beam-column connections as rigid. However, experimental results prove the existence of relative rotations in beam-column connections of reinforced concrete structures, showing the partial transfer of bending moment. In this study the influence of the stiffness of beam-column connections on the global stability and in the column bending moments of buildings in reinforced concrete was investigated. A building was designed with rigid connections and deformable connections to identify the importance of considering the influence of the stiffness of the beam-column connections in the overall stability of monolithic and in the redistribution efforts in reinforced concrete structures. In order to determine the stiffness rotation of deformable connections, two analytical models available in literature were used, and a comparison between the results obtained by each analytical model was also performed. Based on the results, it is concluded that neglecting the influence of the stiffness of the beam-column connections on the analysis of monolithic reinforced concrete structures may result in different solutions compared to the real behavior of the structure. The stiffness values obtained with the analytical models usually differ from the condition of rigid connections, suggesting an adjustment on the standard consideration of rigid connections adopted by the computer programs of structural calculation.


Currently, prefabricated reinforced concrete structures are widely used for the construction of buildings of various functional purposes. In this regard, has been developed SP 356.1325800.2017 "Frame Reinforced Concrete Prefabricated Structures of Multi-Storey Buildings. Design Rules", which establishes requirements for the calculation and design of precast reinforced concrete structures of frame buildings of heavy, fine-grained and lightweight structural concrete for buildings with a height of not more than 75 m. The structure of the set of rules consists of eight sections and one annex. The document reviewed covers the design of multi-story framed beam structural systems, the elements of which are connected in a spatial system with rigid (partially compliant) or hinged joints and concreting of the joints between the surfaces of the abutting precast elements. The classification of structural schemes of building frames, which according to the method of accommodation of horizontal loads are divided into bracing, rigid frame bracing and framework, is presented. The list of structural elements, such as foundations, columns, crossbars, ribbed and hollow floor slabs and coatings, stiffness elements and external enclosing structures is given; detailed instructions for their design are provided. The scope of the developed set of rules includes all natural and climatic zones of the Russian Federation, except seismic areas with 7 or more points, as well as permafrost zones.


Problems when calculating reinforced concrete structures based on the concrete deformation under compression diagram, which is presented both in Russian and foreign regulatory documents on the design of concrete and reinforced concrete structures are considered. The correctness of their compliance for all classes of concrete remains very approximate, especially a significant difference occurs when using Euronorm due to the different shape and sizes of the samples. At present, there are no methodical recommendations for determining the ultimate relative deformations of concrete under axial compression and the construction of curvilinear deformation diagrams, which leads to limited experimental data and, as a result, does not make it possible to enter more detailed ultimate strain values into domestic standards. The results of experimental studies to determine the ultimate relative deformations of concrete under compression for different classes of concrete, which allowed to make analytical dependences for the evaluation of the ultimate relative deformations and description of curvilinear deformation diagrams, are presented. The article discusses various options for using the deformation model to assess the stress-strain state of the structure, it is concluded that it is necessary to use not only the finite values of the ultimate deformations, but also their intermediate values. This requires reliable diagrams "s–e” for all classes of concrete. The difficulties of measuring deformations in concrete subjected to peak load, corresponding to the prismatic strength, as well as main cracks that appeared under conditions of long-term step loading are highlighted. Variants of more accurate measurements are proposed. Development and implementation of the new standard GOST "Concretes. Methods for determination of complete diagrams" on the basis of the developed method for obtaining complete diagrams of concrete deformation under compression for the evaluation of ultimate deformability of concrete under compression are necessary.


Sign in / Sign up

Export Citation Format

Share Document