scholarly journals ROTATION FORESTS AND RANDOM FOREST CLASSIFIERS FOR MONITORING OF VEGETATION IN PAYS DE BREST (FRANCE)

Author(s):  
S. Niculescu ◽  
J. Xia ◽  
D. Roberts ◽  
A. Billey

Abstract. Remote sensing is a potentially very useful source of information for spatial monitoring of natural or cultivated vegetation. The latest advances, in particular the arrival of new image acquisition programs, are changing the temporal approach to monitoring vegetation. The latest European satellites launched, delivering an image every 5 days for each point on the globe, allow the end of a growing season to be monitored. The main objective of this work is to identify and map the vegetation in the Pays de Brest area by using a multi sensors stacking of Sentinel-1 and Sentinel-2 satellites data via Random Forest, Rotation forests (RoF) and Canonical Correlation Forests (CCFs). RoF and CCF create diverse base learners using data transformation and subset features. Twenty four radar images and optical dataa representing different dates in 2017 were processed in time series stacks. The results of RoF and CCF were compared with the ones of RF.

2020 ◽  
Vol 12 (13) ◽  
pp. 2140 ◽  
Author(s):  
Tianwei Ren ◽  
Zhe Liu ◽  
Lin Zhang ◽  
Diyou Liu ◽  
Xiaojie Xi ◽  
...  

Accurate and timely access to the production area of crop seeds allows the seed market and secure seed supply to be monitored. Seed maize and common maize production fields typically share similar phenological development profiles with differences in the planting patterns, which makes it challenging to separate these fields from decametric-resolution satellite images. In this research, we proposed a method to identify seed maize production fields as early as possible in the growing season using a time series of remote sensing images in the Liangzhou district of Gansu province, China. We collected Sentinel-2 and GaoFen-1 (GF-1) images captured from March to September. The feature space for classification consists of four original bands, namely red, green, blue, and near-infrared (nir), and eight vegetation indexes. We analyzed the timeliness of seed maize identification using Sentinel-2 time series of different time spans and identified the earliest time frame for reasonable classification accuracy. Then, the earliest time series that met the requirements of regulatory accuracy were compared and analyzed. Four machine/deep learning algorithms were tested, including K-nearest neighbor (KNN), support vector classification (SVC), random forest (RF), and long short-term memory (LSTM). The results showed that using Sentinel-2 images from March to June, the RF and LSTM algorithms achieve over 88% accuracy, with the LSTM performing the best (90%). In contrast, the accuracy of KNN and SVC was between 82% and 86%. At the end of June, seed maize mapping can be carried out in the experimental area, and the precision can meet the basic requirements of monitoring for the seed industry. The classification using GF-1 images were less accurate and reliable; the accuracy was 85% using images from March to June. To achieve near real-time identification of seed maize fields early in the growing season, we adopted an automated sample generation approach for the current season using only historical samples based on clustering analysis. The classification accuracy using new samples extracted from historical mapping reached 74% by the end of the season (September) and 63% by the end of July. This research provides important insights into the classification of crop fields cultivated with the same crop but different planting patterns using remote sensing images. The approach proposed by this study enables near-real time identification of seed maize production fields within the growing season, which could effectively support large-scale monitoring of the seed supply industry.


Drones ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 21 ◽  
Author(s):  
Francisco Rodríguez-Puerta ◽  
Rafael Alonso Ponce ◽  
Fernando Pérez-Rodríguez ◽  
Beatriz Águeda ◽  
Saray Martín-García ◽  
...  

Controlling vegetation fuels around human settlements is a crucial strategy for reducing fire severity in forests, buildings and infrastructure, as well as protecting human lives. Each country has its own regulations in this respect, but they all have in common that by reducing fuel load, we in turn reduce the intensity and severity of the fire. The use of Unmanned Aerial Vehicles (UAV)-acquired data combined with other passive and active remote sensing data has the greatest performance to planning Wildland-Urban Interface (WUI) fuelbreak through machine learning algorithms. Nine remote sensing data sources (active and passive) and four supervised classification algorithms (Random Forest, Linear and Radial Support Vector Machine and Artificial Neural Networks) were tested to classify five fuel-area types. We used very high-density Light Detection and Ranging (LiDAR) data acquired by UAV (154 returns·m−2 and ortho-mosaic of 5-cm pixel), multispectral data from the satellites Pleiades-1B and Sentinel-2, and low-density LiDAR data acquired by Airborne Laser Scanning (ALS) (0.5 returns·m−2, ortho-mosaic of 25 cm pixels). Through the Variable Selection Using Random Forest (VSURF) procedure, a pre-selection of final variables was carried out to train the model. The four algorithms were compared, and it was concluded that the differences among them in overall accuracy (OA) on training datasets were negligible. Although the highest accuracy in the training step was obtained in SVML (OA=94.46%) and in testing in ANN (OA=91.91%), Random Forest was considered to be the most reliable algorithm, since it produced more consistent predictions due to the smaller differences between training and testing performance. Using a combination of Sentinel-2 and the two LiDAR data (UAV and ALS), Random Forest obtained an OA of 90.66% in training and of 91.80% in testing datasets. The differences in accuracy between the data sources used are much greater than between algorithms. LiDAR growth metrics calculated using point clouds in different dates and multispectral information from different seasons of the year are the most important variables in the classification. Our results support the essential role of UAVs in fuelbreak planning and management and thus, in the prevention of forest fires.


2020 ◽  
Vol 12 (21) ◽  
pp. 3524
Author(s):  
Feng Gao ◽  
Martha C. Anderson ◽  
W. Dean Hively

Cover crops are planted during the off-season to protect the soil and improve watershed management. The ability to map cover crop termination dates over agricultural landscapes is essential for quantifying conservation practice implementation, and enabling estimation of biomass accumulation during the active cover period. Remote sensing detection of end-of-season (termination) for cover crops has been limited by the lack of high spatial and temporal resolution observations and methods. In this paper, a new within-season termination (WIST) algorithm was developed to map cover crop termination dates using the Vegetation and Environment monitoring New Micro Satellite (VENµS) imagery (5 m, 2 days revisit). The WIST algorithm first detects the downward trend (senescent period) in the Normalized Difference Vegetation Index (NDVI) time-series and then refines the estimate to the two dates with the most rapid rate of decrease in NDVI during the senescent period. The WIST algorithm was assessed using farm operation records for experimental fields at the Beltsville Agricultural Research Center (BARC). The crop termination dates extracted from VENµS and Sentinel-2 time-series in 2019 and 2020 were compared to the recorded termination operation dates. The results show that the termination dates detected from the VENµS time-series (aggregated to 10 m) agree with the recorded harvest dates with a mean absolute difference of 2 days and uncertainty of 4 days. The operational Sentinel-2 time-series (10 m, 4–5 days revisit) also detected termination dates at BARC but had 7% missing and 10% false detections due to less frequent temporal observations. Near-real-time simulation using the VENµS time-series shows that the average lag times of termination detection are about 4 days for VENµS and 8 days for Sentinel-2, not including satellite data latency. The study demonstrates the potential for operational mapping of cover crop termination using high temporal and spatial resolution remote sensing data.


2019 ◽  
Vol 11 (9) ◽  
pp. 1088 ◽  
Author(s):  
Yulong Wang ◽  
Xingang Xu ◽  
Linsheng Huang ◽  
Guijun Yang ◽  
Lingling Fan ◽  
...  

The accurate and timely monitoring and evaluation of the regional grain crop yield is more significant for formulating import and export plans of agricultural products, regulating grain markets and adjusting the planting structure. In this study, an improved Carnegie–Ames–Stanford approach (CASA) model was coupled with time-series satellite remote sensing images to estimate winter wheat yield. Firstly, in 2009 the entire growing season of winter wheat in the two districts of Tongzhou and Shunyi of Beijing was divided into 54 stages at five-day intervals. Net Primary Production (NPP) of winter wheat was estimated by the improved CASA model with HJ-1A/B satellite images from 39 transits. For the 15 stages without HJ-1A/B transit, MOD17A2H data products were interpolated to obtain the spatial distribution of winter wheat NPP at 5-day intervals over the entire growing season of winter wheat. Then, an NPP-yield conversion model was utilized to estimate winter wheat yield in the study area. Finally, the accuracy of the method to estimate winter wheat yield with remote sensing images was verified by comparing its results to the ground-measured yield. The results showed that the estimated yield of winter wheat based on remote sensing images is consistent with the ground-measured yield, with R2 of 0.56, RMSE of 1.22 t ha−1, and an average relative error of −6.01%. Based on time-series satellite remote sensing images, the improved CASA model can be used to estimate the NPP and thereby the yield of regional winter wheat. This approach satisfies the accuracy requirements for estimating regional winter wheat yield and thus may be used in actual applications. It also provides a technical reference for estimating large-scale crop yield.


2018 ◽  
Vol 10 (10) ◽  
pp. 1642 ◽  
Author(s):  
Kristof Van Tricht ◽  
Anne Gobin ◽  
Sven Gilliams ◽  
Isabelle Piccard

A timely inventory of agricultural areas and crop types is an essential requirement for ensuring global food security and allowing early crop monitoring practices. Satellite remote sensing has proven to be an increasingly more reliable tool to identify crop types. With the Copernicus program and its Sentinel satellites, a growing source of satellite remote sensing data is publicly available at no charge. Here, we used joint Sentinel-1 radar and Sentinel-2 optical imagery to create a crop map for Belgium. To ensure homogenous radar and optical inputs across the country, Sentinel-1 12-day backscatter mosaics were created after incidence angle normalization, and Sentinel-2 normalized difference vegetation index (NDVI) images were smoothed to yield 10-daily cloud-free mosaics. An optimized random forest classifier predicted the eight crop types with a maximum accuracy of 82% and a kappa coefficient of 0.77. We found that a combination of radar and optical imagery always outperformed a classification based on single-sensor inputs, and that classification performance increased throughout the season until July, when differences between crop types were largest. Furthermore, we showed that the concept of classification confidence derived from the random forest classifier provided insight into the reliability of the predicted class for each pixel, clearly showing that parcel borders have a lower classification confidence. We concluded that the synergistic use of radar and optical data for crop classification led to richer information increasing classification accuracies compared to optical-only classification. Further work should focus on object-level classification and crop monitoring to exploit the rich potential of combined radar and optical observations.


2022 ◽  
Vol 14 (1) ◽  
pp. 216
Author(s):  
Eva Lopez-Fornieles ◽  
Guilhem Brunel ◽  
Florian Rancon ◽  
Belal Gaci ◽  
Maxime Metz ◽  
...  

Recent literature reflects the substantial progress in combining spatial, temporal and spectral capacities for remote sensing applications. As a result, new issues are arising, such as the need for methodologies that can process simultaneously the different dimensions of satellite information. This paper presents PLS regression extended to three-way data in order to integrate multiwavelengths as variables measured at several dates (time-series) and locations with Sentinel-2 at a regional scale. Considering that the multi-collinearity problem is present in remote sensing time-series to estimate one response variable and that the dataset is multidimensional, a multiway partial least squares (N-PLS) regression approach may be relevant to relate image information to ground variables of interest. N-PLS is an extension of the ordinary PLS regression algorithm where the bilinear model of predictors is replaced by a multilinear model. This paper presents a case study within the context of agriculture, conducted on a time-series of Sentinel-2 images covering regional scale scenes of southern France impacted by the heat wave episode that occurred on 28 June 2019. The model has been developed based on available heat wave impact data for 107 vineyard blocks in the Languedoc-Roussillon region and multispectral time-series predictor data for the period May to August 2019. The results validated the effectiveness of the proposed N-PLS method in estimating yield loss from spectral and temporal attributes. The performance of the model was evaluated by the R2 obtained on the prediction set (0.661), and the root mean square of error (RMSE), which was 10.7%. Limitations of the approach when dealing with time-series of large-scale images which represent a source of challenges are discussed; however, the N–PLS regression seems to be a suitable choice for analysing complex multispectral imagery data with different spectral domains and with a clear temporal evolution, such as an extreme weather event.


2021 ◽  
Vol 14 (21) ◽  
Author(s):  
Gáspár Albert ◽  
Seif Ammar

Abstract Remotely sensed data such as satellite photos and radar images can be used to produce geological maps on arid regions, where the vegetation coverage does not have a significant effect. In central Tunisia, the Jebel Meloussi area has unique geological features and characteristic morphology (i.e. flat areas with dune fields in contrast with hills of folded and eroded stratigraphic sequences), which makes it an ideal area for testing new methods of automatic terrain classification. For this, data from the Sentinel 2 satellite sensor and the SRTM-based MERIT DEM (digital elevation model) were used in the present study. Using R scripts and the random forest classification method, modelling was performed on four lithological variables—derived from the different bands of the Sentinel 2 images—and two morphometric parameters for the area of the 1:50,000 geological map sheet no. 103. The four lithological variables were chosen to highlight the iron-bearing minerals since the spectral parameters of the Sentinel 2 sensors are especially useful for this purpose. The training areas of the classification were selected on the geological map. The results of the modelling identified Eocene and Cretaceous evaporite-bearing sedimentary series (such as the Jebs and the Bouhedma Formations) with the highest producer accuracy (> 60% of the predicted pixels match with the map). The pyritic argillites of the Sidi Khalif Formation were also recognized with the same accuracy, and the Quaternary sebhkas and dunes were also well predicted. The study concludes that the classification-based geological map is useful for field geologist prior to field surveys.


Author(s):  
S. A. Sawant ◽  
J. D. Mohite ◽  
S. Pappula

<p><strong>Abstract.</strong> The rise in global population has increased food and water demand thereby causing excessive pressure on existing resources. In developing countries with fragmented land holdings there exists constant pressure on available water and land resources. Obtaining field scale crop specific information is challenging task. Advent of open freely available multi-temporal remote sensing observations with improved radiometric resolution the possibilities for near real / real time applications has increased. In this study and an attempt has been made to establish operational model for field level crop growth monitoring using integrated approach of crowd sourcing and time series of remote sensing observations. The time series of Sentinel 2 (A and B) satellite has been used to estimate crop growth related components such as vegetation indices and crop growth stage and crop phenology. In initial stage high valued cereal crop Wheat has been selected. The field level information (i.e. 108 Wheat fields) collected using mobile based agro-advisory platform mKRISHI&amp;reg; has been used to extract time series of Sentinel 2 observations (44 scenes for year 2016 and 2018). The moving average has been used for filling gaps in the time series of vegetation indices. The BFAST and GreenBrown package in R were used for detecting breaks in vegetation index time series and estimating crop growth stages. Analysis shows that the estimated crop phenology parameters were in better agreement with the field observations. In future more crops from different agro-climatic conditions will be considered for providing field level crop management advisory.</p>


2021 ◽  
Vol 13 (24) ◽  
pp. 5074
Author(s):  
Feng Gao ◽  
Martha C. Anderson ◽  
David M. Johnson ◽  
Robert Seffrin ◽  
Brian Wardlow ◽  
...  

Crop emergence is a critical stage for crop development modeling, crop condition monitoring, and biomass accumulation estimation. Green-up dates (or the start of the season) detected from remote sensing time series are related to, but generally lag, crop emergence dates. In this paper, we refine the within-season emergence (WISE) algorithm and extend application to five Corn Belt states (Iowa, Illinois, Indiana, Minnesota, and Nebraska) using routine harmonized Landsat and Sentinel-2 (HLS) data from 2018 to 2020. Green-up dates detected from the HLS time series were assessed using field observations and near-surface measurements from PhenoCams. Statistical descriptions of green-up dates for corn and soybeans were generated and compared to county-level planting dates and district- to state-level crop emergence dates reported by the National Agricultural Statistics Service (NASS). Results show that emergence dates for corn and soybean can be reliably detected within the season using the HLS time series acquired during the early growing season. Compared to observed crop emergence dates, green-up dates from HLS using WISE were ~3 days later at the field scale (30-m). The mean absolute difference (MAD) was ~7 days and the root mean square error (RMSE) was ~9 days. At the state level, the mean differences between median HLS green-up date and median crop emergence date were within 2 days for 2018–2020. At this scale, MAD was within 4 days, and RMSE was less than 5 days for both corn and soybeans. The R-squares were 0.73 and 0.87 for corn and soybean, respectively. The 2019 late emergence of crops in Corn Belt states (1–4 weeks to five-year average) was captured by HLS green-up date retrievals. This study demonstrates that routine within-season mapping of crop emergence/green-up at the field scale is practicable over large regions using operational satellite data. The green-up map derived from HLS during the growing season provides valuable information on spatial and temporal variability in crop emergence that can be used for crop monitoring and refining agricultural statistics used in broad-scale modeling efforts.


Sign in / Sign up

Export Citation Format

Share Document