scholarly journals THE ROLE OF GIS IN ADDRESSING ENVIRONMENTAL, SOCIAL AND TOURISTIC CHALLENGES IN MOHAMMEDIA CITY, MOROCCO

Author(s):  
M. R. Simou ◽  
H. Rhinane ◽  
M. Maanan

Abstract. During the last years, Morocco’s Environmental, Social and Touristic perspectives has improved significantly, but it remains one of the biggest challenges for Mohammedia city. The purpose of this study is to locate an optimal site for the construction of a new Waste Water Treatment Plant (WWTP) in order to help the environment, to select an appropriate site for the construction of a new School that will benefit the social needs of the city and to create a suitable tour plan of touristic sites for tourism. It was carried out by using Geographic Information System (GIS), Remote Sensing (RS), Global Positioning System (GPS) devices, Digital cameras and Multi- criteria Decision Analysis (MCDA).Throughout the process, the used data for both WWTP and School selection include the remote sensing data of multi spectral satellite imageries and the digital elevation model combined with vector data of land use (LU) layers, and for Tour creation the used data include collected photographs and GPS data from the site. According to MCDA, the results presents an optimal site with an area of 48283,02 m2 for a new WWTP, a suitable area with an area of 3200 m² for a new School and a city tour for tourists with a distance of 27 km.

2016 ◽  
Vol 9 (2) ◽  
Author(s):  
Dinda Rita K. Hartaja ◽  
Imam Setiadi

Generally, wastewater of nata de coco industry contains suspended solids and COD were high, ranging from 90,000 mg / l. The high level of of the wastewater pollutants, resulting in nata de coco industry can not be directly disposed of its wastewater into the environment agency. Appropriate technology required in order to process the waste water so that the treated water can meet the environmental quality standards that are allowed. Designing the waste water treatment plant that is suitable and efficient for treating industrial wastewater nata de coco is the activated sludge process. Wastewater treatment using activated sludge process of conventional (standard) generally consists of initial sedimentation, aeration and final sedimentation.Keywords : Activated Sludge, Design, IPAL


1991 ◽  
Vol 23 (4-6) ◽  
pp. 825-834 ◽  
Author(s):  
T. H. Lessel

The upgrading and nitrification was required for the waste water treatment plant in Geiselbullach. As space for more aeration tanks was not available, the possibility of increasing the MLSS by the use of submerged bio-film reactors was tested in a half technical scale pilot plant with three different reactor materials. Each tested reactor material caused a significant increase of MLSS and the nitrification reaction. The rope-type material was selected for the practical application, as it had not the same disadvantages of the other tested systems, which proved operational problems. After one year of continuous operation for nitrification in the full scale plant the influences on the biomass characteristics were investigated. Design criterias and details and operational data are reported.


1991 ◽  
Vol 24 (10) ◽  
pp. 161-170 ◽  
Author(s):  
M. D. Sinke

Until a century ago, The Hague's waste water was discharged directly into the city's canals. However, the obnoxious smell and resultant pollution of local waters and beaches then necessitated the implementation of a policy of collecting and transferring waste water by means of a system of sewers. By 1937, it was being discharged, via a 400 metre-long sea outfall, directly into the North Sea. By 1967, however, the increasing volume of waste water being generated by The Hague and the surrounding conurbations called for the construction of a primary sedimentation plant. This had two sea outfalls, one 2.5 km long and the other 10 km long, the former for discharging pre-settled waste water and the latter for discharging sludge directly into the North Sea. This “separation plant” was enlarged during the period 1986-1990. On account of the little available area - only 4.1 ha - the plant had to be enlarged in two stages by constructing a biological treatment section and a sludge treatment section with a capacity of 1,700,000 p.e. (at 136 gr O2/p.e./day). In order to gain additional space, a number of special measures were introduced, including aerating gas containing 90% oxygen and stacked final clarifiers. Following completion of the sludge treatment section, it has become possible, since 1st May 1990, to dump digested sludge into a large reservoir (“The Slufter”), specially constructed to accommodate polluted mud dredged from the Rotterdam harbours and waterways. As a result of these measures, there has been a reduction of between 70% and 95% in North Sea pollution arising from the “Houtrust” waste water treatment plant. Related investment totalled Dfl. 200 million and annual operating and maintenance costs (including investment charges) will amount to Dfl. 30 million. Further measures will have to be taken in the future to reduce the discharge of phosphorus and nitrogen. So this enlargement is not the end. There will be continued extension of the purification operations of the “Houtrust” waste water treatment plant.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 225-232
Author(s):  
C. F. Seyfried ◽  
P. Hartwig

This is a report on the design and operating results of two waste water treatment plants which make use of biological nitrogen and phosphate elimination. Both plants are characterized by load situations that are unfavourable for biological P elimination. The influent of the HILDESHEIM WASTE WATER TREATMENT PLANT contains nitrates and little BOD5. Use of the ISAH process ensures the optimum exploitation of the easily degradable substrate for the redissolution of phosphates. Over 70 % phosphate elimination and effluent concentrations of 1.3 mg PO4-P/I have been achieved. Due to severe seasonal fluctuations in loading the activated sludge plant of the HUSUM WASTE WATER TREATMENT PLANT has to be operated in the stabilization range (F/M ≤ 0.05 kg/(kg·d)) in order not to infringe the required effluent values of 3.9 mg NH4-N/l (2-h-average). The production of surplus sludge is at times too small to allow biological phosphate elimination to be effected in the main stream process. The CISAH (Combined ISAH) process is a combination of the fullstream with the side stream process. It is used in order to achieve the optimum exploitation of biological phosphate elimination by the precipitation of a stripped side stream with a high phosphate content when necessary.


1996 ◽  
Vol 33 (12) ◽  
pp. 251-254
Author(s):  
Karl Arno Bäumer ◽  
Angela Baumann

The Institute for Water and Waste Management (ISA) at the Aachen University of Technology (RWTH) verified, through semi-technical analysis, the efficiency of the planned upgrade of the Kleve-Salmorth waste water treatment plant. Additionally the allowable biological phosphorus removal limit and the scheduled simultaneous precipitation were also ascertained.


Author(s):  
Tamara Lang ◽  
Markus Himmelsbach ◽  
Franz Mlynek ◽  
Wolfgang Buchberger ◽  
Christian W. Klampfl

AbstractIn the present study, the uptake and metabolization of the sartan drug telmisartan by a series of plants was investigated. Thereby for seven potential metabolites, modifications on the telmisartan molecule such as hydroxylation and/or glycosylation could be tentatively identified. For two additional signals detected at accurate masses m/z 777.3107 and m/z 793.3096, no suggestions for molecular formulas could be made. Further investigations employing garden cress (Lepidium sativum) as a model plant were conducted. This was done in order to develop an analytical method allowing the detection of these substances also under environmentally relevant conditions. For this reason, the knowledge achieved from treatment of the plants with rather high concentrations of the parent drug (10 mg L−1) was compared with results obtained when using solutions containing telmisartan in the μg - ng L−1 range. Thereby the parent drug and up to three tentative drug-related metabolites could still be detected. Finally cress was cultivated in water taken from a local waste water treatment plant effluent containing 90 ng L−1 of telmisartan and harvested and the cress roots were extracted. In this extract, next to the parent drug one major metabolite, namely telmisartan-glucose could be identified.


2009 ◽  
Vol 55 (No. 2) ◽  
pp. 62-68 ◽  
Author(s):  
J. Kára ◽  
Z. Pastorek ◽  
J. Mazancová ◽  
I. Hanzlíková

The basis of the biogas production in agriculture is the processing of waste agricultural products (particularly excrements of farm animals but also phytomass). Different but rather similar is the biogas production from biologically degradable municipal waste (BDMW) and biologically degradable industrial waste (BDIW) coming mainly from food industry. The processing of these wastes in agricultural biogas stations could significantly improve their economy. It is necessary to note that all these biogas stations differ from the wastewater cleaning plants where municipal sludge water from public sewers is processed. The municipal sludge water processing to biogas by anaerobic fermentation is a classical technology introduced all over the world. At present, about 100 wastewater cleaning plants operate in the Czech Republic using regular sludge processing into biogas. Electricity produced is utilised mainly for the needs of own operation of waste water treatment plant (WWTP), partly it is sold into public power net. The heat energy is used for heating in the process and its surplus is utilised for operational and administrative facilities. Usually, the heat and electricity quantities produced do not cover the wastewater cleaning plant operation. Agricultural biogas stations and biogas stations for BDMW processing provide considerably higher gas yields because they work with higher dry matter contents in substratum, i.e. 8–12% (compared with waste water treatment plants – 2–6%), and are able to produce high gas surpluses for following applications. Frequently discussed issue are the processing of slaughter waste and grass (or public green areas at biogas stations).


2014 ◽  
Vol 905 ◽  
pp. 191-194 ◽  
Author(s):  
Zbyšek Pavlík ◽  
Milena Pavlíková ◽  
Jan Fořt ◽  
Martina Záleská ◽  
Igor Medveď ◽  
...  

Chemical, physical, morphological, and mineralogical analysis of sewage sludge originating from a waste water treatment plant in Patras, Greece, is presented in the paper. The sewage sludge is firstly dried at 70°C, then oven-burned at 700°C for two hours and milled. The thermally treated material is analyzed using XRF and XRD, the particle size distribution is determined by a laser diffraction method. A potential use of sewage sludge in blended cements is investigated on the basis of the measurement of mechanical and basic physical properties of pastes containing the sludge in an amount of up to 60% of the mass of cement. Experimental results show that the thermal treatment of pre-dried sewage sludge and its grinding provides a material that can be successfully applied as a partial replacement of Portland cement. At a production of blended cements for high strength concrete, an up to 20% cement replacement level can be recommended.


Sign in / Sign up

Export Citation Format

Share Document