Assessment the Accuracy of Data Acquisition by Close Range Photogrammetry Technique in The Restoration of Historical Buildings

2017 ◽  
Vol 21 (1) ◽  
pp. 17-24
Author(s):  
Ateaya Azeez ◽  
Ahmed Amin ◽  
Ahmed El-Hattab ◽  
Ahmed El-sharkawy
Author(s):  
M. Lo Brutto ◽  
D. Ebolese ◽  
G. Dardanelli

The photogrammetric survey of architectural Cultural Heritage is a very useful and standard process in order to obtain accurate 3D data for the documentation and visualization of historical buildings. In particular, the integration of terrestrial close-range photogrammetry and Remotely Piloted Aircraft Systems (RPASs) photogrammetry allows to create accurate and reliable 3D models of buildings and to monitor their state of conservation. The use of RPASs has indeed become more popular in Cultural Heritage survey to measure and detect areas that cannot normally be covered using terrestrial photogrammetry or terrestrial laser scanner.<br> The paper presents the results of a photogrammetric survey executed to document the monumental complex of <i>Villa Lampedusa ai Colli</i> in Palermo (Italy), one of the most important historical buildings of the town. An integrated survey by close-range photogrammetry and RPAS photogrammetry was planned and carried out to reconstruct the 3D digital model of the monumental complex. Different images configurations (terrestrial, aerial nadiral, aerial parallel and oblique to the façades) have been acquired; data have been processed to verify the accuracy of the photogrammetric survey as regards the camera calibration parameters and the number of Ground Control Points (GCPs) measured on building façades.<br> A very detailed 3D digital model and high-resolution ortho-images of the façades were obtained in order to carry out further analysis for historical studies, conservation and restoration project. The final 3D model of <i>Villa Lampedusa ai Colli</i> has been compared with a laser scanner 3D model to evaluate the quality of the photogrammetric approach.<br> Beyond a purely metric assessment, 3D textured model has employed to generate 2D representations, useful for documentation purpose and to highlight the most significant damaged areas. 3D digital models and 2D representations can effectively contribute to monitor the state of conservation of historical buildings and become a very useful support for preliminary restoration works.


Author(s):  
K. N. Fauzan ◽  
D. Suwardhi ◽  
A. Murtiyoso ◽  
I. Gumilar ◽  
T. P. Sidiq

Abstract. Close-Range Photogrammetry (CRP) technology advanced rapidly along with the development of camera sensors. CRP has many advantages over other methods in terms of technical data acquisition, product quality, and cost. Because of these advantages, the CRP method can be used in various applications. In this study, the CRP method is used to monitor the deformation of the SF6 Gas Insulated Line (GIL) object between two substations of the Indonesian National Electricity Service in Kuningan Barat, South Jakarta. Planning was carried out with a simulation using 3D field data obtained from reconnaissance process. During the survey, photo data was collected using a smartphone and processed to form a 3D model. The simulation produced a configuration of control points, check points, and camera stations that have the best Strength of Figure (SoF) values. In the planning process, camera pre-calibration is carried out to get the best camera orientation parameter values from several experiments. The planning results are used in the next stage, namely field data acquisition and data processing. The data acquisition process was carried out for two sessions. This is done to see the changes in coordinates that occur between these sessions. Data processing was carried out by following the classical photogrammetric stages. The results obtained from this study are the average accuracy produced by Close-Range Photogrammetry method for measuring deformation which is below a tolerance of 3 mm. With this method, deformation measurements can be carried out quickly, accurately, and at a relatively lower cost than other observation methods.


Author(s):  
S.P. Singh ◽  
K. Jain ◽  
V.R. Mandla

3D city model is a digital representation of the Earth's surface and it’s related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations <br><br> This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country and high resolution satellite images are costly. In this study, proposed method is based on only simple video recording of area. Thus this proposed method is suitable for 3D city modeling. <br><br> Photo-realistic, scalable, geo-referenced virtual 3D city model is useful for various kinds of applications such as for planning in navigation, tourism, disasters management, transportations, municipality, urban and environmental managements, real-estate industry. Thus this study will provide a good roadmap for geomatics community to create photo-realistic virtual 3D city model by using close range photogrammetry.


2011 ◽  
Vol 130-134 ◽  
pp. 2404-2408
Author(s):  
Jun Ma ◽  
Wen Ying Su

In view of the heavy workload and possible intervention to the normal traffic flow during the performance testing of road traffic signs, this paper is designed to present a system that can be installed in an automobile and automatically track and analyze the performance of traffic signs. The system consists of a carrying vehicle, GPS, IMU, area-array cameras, frame grabbers, data acquisition software and data analysis software. Based on close-range photogrammetry technology, the system is designed with a set of effective road traffic signs automatic detection algorithms, which can automatically measure and analyze the properties of road traffic signs, such as dimensions, headroom and verticality of the column, etc.


2021 ◽  
Vol 11 (6) ◽  
pp. 2785
Author(s):  
Michael Lösler ◽  
Cornelia Eschelbach ◽  
Thomas Klügel ◽  
Stefan Riepl

A global geodetic reference system (GGRS) is realized by physical points on the Earth’s surface and is referred to as a global geodetic reference frame (GGRF). The GGRF is derived by combining several space geodetic techniques, and the reference points of these techniques are the physical points of such a realization. Due to the weak physical connection between the space geodetic techniques, so-called local ties are introduced to the combination procedure. A local tie is the spatial vector defined between the reference points of two space geodetic techniques. It is derivable by local measurements at multitechnique stations, which operate more than one space geodetic technique. Local ties are a crucial component within the intertechnique combination; therefore, erroneous or outdated vectors affect the global results. In order to reach the ambitious accuracy goal of 1 mm for a global position, the global geodetic observing system (GGOS) aims for strategies to improve local ties, and, thus, the reference point determination procedures. In this contribution, close range photogrammetry is applied for the first time to determine the reference point of a laser telescope used for satellite laser ranging (SLR) at Geodetic Observatory Wettzell (GOW). A measurement campaign using various configurations was performed at the Satellite Observing System Wettzell (SOS-W) to evaluate the achievable accuracy and the measurement effort. The bias of the estimates were studied using an unscented transformation. Biases occur if nonlinear functions are replaced and are solved by linear substitute problems. Moreover, the influence of the chosen stochastic model onto the estimates is studied by means of various dispersion matrices of the observations. It is shown that the resulting standard deviations are two to three times overestimated if stochastic dependencies are neglected.


Sign in / Sign up

Export Citation Format

Share Document